Pioneering Built-in Interfacial Electric Field for Enhanced Anion Exchange Membrane Water Electrolysis

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-11-22 DOI:10.1002/anie.202414647
huawei huang, Liangliang xu, Shouwei Zuo, yuanfu Ren, Lu Song, chen zhou, xingkun wang, Javier Ruiz Martínez, kuowei huang, Huabin Zhang
{"title":"Pioneering Built-in Interfacial Electric Field for Enhanced Anion Exchange Membrane Water Electrolysis","authors":"huawei huang, Liangliang xu, Shouwei Zuo, yuanfu Ren, Lu Song, chen zhou, xingkun wang, Javier Ruiz Martínez, kuowei huang, Huabin Zhang","doi":"10.1002/anie.202414647","DOIUrl":null,"url":null,"abstract":"Here, we develop a nano-heterostructure composed of ultra-thin W5N4 shells over Ni3N nanoparticles (Ni3N@W5N4) as efficient catalysts, in which built-in interfacial electric field (BIEF) is created owing to the distinct lattice arrangements and work functions of biphasic metal nitrides. The BIEF facilitates the electron localization around the interface and enables high valence W and more exposed binding sites in the surface W5N4 shell for accelerating the water dissociation step, ultimately leading to a remarkable reduction in the energy barriers of RDS from 1.40 eV to 0.26 eV. Theoretical calculations and operando X-ray absorption spectroscopy analysis results demonstrated that surface W5N4 serves as the active species for HER. Moreover, the ultra-thin shell characteristics enable the optimized W5N4 with enhanced intrinsic catalytic activity to be fully exposed as active sites. Consequently, the Ni3N@W5N4 exhibits exceptional performance in alkaline HER (60 mV@10 mA cm-2) and remarkable long-term stability (500 mA cm-2 for 100 hours). When employed as the cathode in the AEMWE device, the synthesized Ni3N@W5N4 demonstrates stable performance for over 80 hours at a current density of 1 A cm-2.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"35 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202414647","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Here, we develop a nano-heterostructure composed of ultra-thin W5N4 shells over Ni3N nanoparticles (Ni3N@W5N4) as efficient catalysts, in which built-in interfacial electric field (BIEF) is created owing to the distinct lattice arrangements and work functions of biphasic metal nitrides. The BIEF facilitates the electron localization around the interface and enables high valence W and more exposed binding sites in the surface W5N4 shell for accelerating the water dissociation step, ultimately leading to a remarkable reduction in the energy barriers of RDS from 1.40 eV to 0.26 eV. Theoretical calculations and operando X-ray absorption spectroscopy analysis results demonstrated that surface W5N4 serves as the active species for HER. Moreover, the ultra-thin shell characteristics enable the optimized W5N4 with enhanced intrinsic catalytic activity to be fully exposed as active sites. Consequently, the Ni3N@W5N4 exhibits exceptional performance in alkaline HER (60 mV@10 mA cm-2) and remarkable long-term stability (500 mA cm-2 for 100 hours). When employed as the cathode in the AEMWE device, the synthesized Ni3N@W5N4 demonstrates stable performance for over 80 hours at a current density of 1 A cm-2.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于增强阴离子交换膜电解水的开创性内置界面电场
在这里,我们开发了一种由覆盖在 Ni3N 纳米粒子(Ni3N@W5N4)上的超薄 W5N4 壳组成的纳米异质结构作为高效催化剂,由于双相金属氮化物不同的晶格排列和功函数,在这种结构中产生了内置界面电场(BIEF)。内置界面电场促进了界面周围的电子定位,使高价W和更多暴露在表面W5N4壳中的结合位点得以加速水解离步骤,最终导致RDS的能垒从1.40 eV显著降低到0.26 eV。理论计算和操作性 X 射线吸收光谱分析结果表明,表面 W5N4 是 HER 的活性物种。此外,超薄外壳的特性使具有更强内在催化活性的优化 W5N4 作为活性位点充分暴露出来。因此,Ni3N@W5N4 在碱性 HER 中表现出卓越的性能(60 mV@10 mA cm-2)和显著的长期稳定性(500 mA cm-2 100 小时)。在 AEMWE 器件中用作阴极时,合成的 Ni3N@W5N4 在 1 A cm-2 的电流密度下可稳定工作 80 多个小时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Molecular‐level Modulation of N, S‐co‐doped Mesoporous Carbon Nanospheres for Selective Aqueous Catalytic Oxidation of Ethylbenzene Copper‐Catalyzed Regioselective and Enantioselective Hydropyridylation of Dienes for the Synthesis of Chiral Diaryl Compounds via Concerted Nucleophilic Aromatic Substitution Ultrafast Luminescence Detection with Selective Adsorption of Carbon Disulfide in a Gold(I) Metal−Organic Framework General and Fast Gas–Solid Synthesis of Functional MXenes and Derivatives on the Scale of Tens of Grams Mechanochromic Organic Micro‐Laser
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1