Anchoring Ru-Ru2P heterojunction on P-doped graphene for enhanced HER performances of water electrolysis

IF 5.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Journal of Alloys and Compounds Pub Date : 2024-11-23 DOI:10.1016/j.jallcom.2024.177725
Longyang Liu, Zichen Wang, Xueyan Zhang, Lijie Luo, Yongjun Chen
{"title":"Anchoring Ru-Ru2P heterojunction on P-doped graphene for enhanced HER performances of water electrolysis","authors":"Longyang Liu, Zichen Wang, Xueyan Zhang, Lijie Luo, Yongjun Chen","doi":"10.1016/j.jallcom.2024.177725","DOIUrl":null,"url":null,"abstract":"Highly active and stable electrocatalysts are highly desired for the hydrogen evolution reaction (HER) in water electrolysis. In this study, a ruthenium-ruthenium phosphide heterojunction (Ru-Ru<sub>2</sub>P) anchored on phosphorus-doped graphene (PCSG) was fabricated via a mild molten salt template method. The graphene was synthesized from discarded coconut shells sourced from Hainan. We found that the heterojunction structure could accelerate electron transfer, while the graphene provided more exposed active sites, significantly enhancing the HER activity of the catalyst. The catalyst prepared at 800 °C with 30<!-- --> <!-- -->mg of RuCl<sub>3</sub> (Ru-Ru<sub>2</sub>P/2D-PCSG-800) exhibited low HER overpotentials of 31<!-- --> <!-- -->mV in alkaline and 57<!-- --> <!-- -->mV in acidic electrolytes at a current density of 10<!-- --> <!-- -->mA<!-- --> <!-- -->cm<sup>-2</sup>, respectively, which were comparable to those of commercial 20% Pt/C catalyst (36<!-- --> <!-- -->mV in alkaline and 40<!-- --> <!-- -->mV in acidic electrolytes). Moreover, the catalyst demonstrated high stability with no significant change in current density after 125<!-- --> <!-- -->hours of operation. Density functional theory calculations revealed that the Ru-Ru<sub>2</sub>P heterojunction could rearrange charge and modify the Ru <em>d</em>-band center, optimizing the adsorption energy of active ⁎H (|ΔG<sub>⁎H</sub>|) and breakage energy of ⁎H-OH bond (ΔG<sub>H2O</sub>).","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"15 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2024.177725","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Highly active and stable electrocatalysts are highly desired for the hydrogen evolution reaction (HER) in water electrolysis. In this study, a ruthenium-ruthenium phosphide heterojunction (Ru-Ru2P) anchored on phosphorus-doped graphene (PCSG) was fabricated via a mild molten salt template method. The graphene was synthesized from discarded coconut shells sourced from Hainan. We found that the heterojunction structure could accelerate electron transfer, while the graphene provided more exposed active sites, significantly enhancing the HER activity of the catalyst. The catalyst prepared at 800 °C with 30 mg of RuCl3 (Ru-Ru2P/2D-PCSG-800) exhibited low HER overpotentials of 31 mV in alkaline and 57 mV in acidic electrolytes at a current density of 10 mA cm-2, respectively, which were comparable to those of commercial 20% Pt/C catalyst (36 mV in alkaline and 40 mV in acidic electrolytes). Moreover, the catalyst demonstrated high stability with no significant change in current density after 125 hours of operation. Density functional theory calculations revealed that the Ru-Ru2P heterojunction could rearrange charge and modify the Ru d-band center, optimizing the adsorption energy of active ⁎H (|ΔG⁎H|) and breakage energy of ⁎H-OH bond (ΔGH2O).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在掺杂 P 的石墨烯上锚定 Ru-Ru2P 异质结以增强水电解的 HER 性能
水电解中的氢进化反应(HER)需要高活性和高稳定性的电催化剂。本研究采用温和的熔盐模板法,在掺磷石墨烯(PCSG)上锚定了钌-磷化钌异质结(Ru-Ru2P)。石墨烯由海南废弃的椰子壳合成。我们发现,异质结结构可以加速电子转移,而石墨烯则提供了更多暴露的活性位点,从而显著提高了催化剂的 HER 活性。用 30 毫克 RuCl3 在 800 °C 下制备的催化剂(Ru-Ru2P/2D-PCSG-800)在 10 mA cm-2 的电流密度下,在碱性电解质中和酸性电解质中分别表现出 31 mV 和 57 mV 的低 HER 过电位,与商业 20% Pt/C 催化剂(在碱性电解质中和酸性电解质中分别为 36 mV 和 40 mV)相当。此外,该催化剂具有很高的稳定性,在运行 125 小时后电流密度没有发生显著变化。密度泛函理论计算表明,Ru-Ru2P 异质结可以重排电荷并改变 Ru d 带中心,优化活性⁎H 的吸附能(|ΔG⁎H|)和⁎H-OH 键的断裂能(ΔGH2O)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
期刊最新文献
Evolution of Ductile L12 Phase in (FeCoNi)86-Al7Ti7 High-Entropy Alloy Aging at Various Temperatures and Its Strengthening Mechanism Microstructure evolution and strain rate sensitivity of ductile Hf20Nb10Ti35Zr35 medium-entropy alloy after thermal cycling Improving the electrochemical corrosion resistance of a high-Ca heat-resistant magnesium alloy by enhancing the barrier effect of the cathodic phase skeleton Container-Free Microfluidic Chemical Reduction for Synthesizing Ultrafine Silver Powder and Fabricating Silver Paste Comparative study of wet oxidation in amorphous and crystalline Zr-Cu-Al: The effect of structural order
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1