{"title":"Highly Stable BaZrS3 Chalcogenide Perovskites for Photoelectrochemical Water Oxidation","authors":"Aparajita Das, Jigar Shaileshkumar Halpati, Vidya Raj and Aravind Kumar Chandiran*, ","doi":"10.1021/acs.energyfuels.4c0317510.1021/acs.energyfuels.4c03175","DOIUrl":null,"url":null,"abstract":"<p >Chalcogenide perovskites have emerged as potential semiconductor materials for optoelectronic devices due to their superior visible light absorption and high thermal and chemical stability. Here, we report BaZrS<sub>3</sub> chalcogenide perovskites-based photoelectrode for photoelectrochemical water splitting (PEC). Experimental findings reveal that BaZrS<sub>3</sub> exhibits excellent stability in harsh pH conditions (pH 3–13) and shows panchromatic absorption with a band gap of 1.77 eV. Temperature-dependent impedance and Raman spectroscopy unveil the presence of polarons and suggest the possibility of polaron-mediated conduction in this material. Under 1 Sun illumination, the PEC device attains a maximum photocurrent density of 0.36 mA/cm<sup>2</sup> at 0.323 V vs Ag/AgCl at pH 12 (equivalent to 0 V vs RHE), maintaining stability for 30 min. Notably, the photoanode exhibits remarkable stability before and after the photoelectrochemical reaction. BaZrS<sub>3</sub> photoanode displays high surface charge separation efficiency, promoting the surface oxidation reaction.</p>","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":"38 22","pages":"22527–22535 22527–22535"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c03175","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Chalcogenide perovskites have emerged as potential semiconductor materials for optoelectronic devices due to their superior visible light absorption and high thermal and chemical stability. Here, we report BaZrS3 chalcogenide perovskites-based photoelectrode for photoelectrochemical water splitting (PEC). Experimental findings reveal that BaZrS3 exhibits excellent stability in harsh pH conditions (pH 3–13) and shows panchromatic absorption with a band gap of 1.77 eV. Temperature-dependent impedance and Raman spectroscopy unveil the presence of polarons and suggest the possibility of polaron-mediated conduction in this material. Under 1 Sun illumination, the PEC device attains a maximum photocurrent density of 0.36 mA/cm2 at 0.323 V vs Ag/AgCl at pH 12 (equivalent to 0 V vs RHE), maintaining stability for 30 min. Notably, the photoanode exhibits remarkable stability before and after the photoelectrochemical reaction. BaZrS3 photoanode displays high surface charge separation efficiency, promoting the surface oxidation reaction.
期刊介绍:
Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.