{"title":"An Efficient Method for Modelling Millimeter-Wave Scan for Security Screening of Humans","authors":"Wenyi Shao;Yan Li","doi":"10.1109/TCI.2024.3487393","DOIUrl":null,"url":null,"abstract":"An efficient approach for modelling 3D millimeter wave body scan is presented\n<italic>.</i>\n The body is represented in the stereolithography (STL) format in terms of many triangles. We pre-cast scattering points in each triangle where the number of points was determined by the area of the triangle and the minimum wavelength. The acquired signal on a receiver is then calculated by summing the effect of all scattering points. In addition, the dielectric parameter of human skin, which is frequency dependent, is used to calculate the reflection coefficient. Signals generated from the simulation software were validated by reconstructing the whole-body images by using the fast Fourier transform algorithm. The simulation data were compared with that from HFSS SBR+ and real measurements. The obtained image and post data analysis demonstrated the accuracy of the presented simulation technique was acceptable and can be used for rapid millimeter-wave body-scan modelling.","PeriodicalId":56022,"journal":{"name":"IEEE Transactions on Computational Imaging","volume":"10 ","pages":"1616-1625"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Imaging","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10755027/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
An efficient approach for modelling 3D millimeter wave body scan is presented
.
The body is represented in the stereolithography (STL) format in terms of many triangles. We pre-cast scattering points in each triangle where the number of points was determined by the area of the triangle and the minimum wavelength. The acquired signal on a receiver is then calculated by summing the effect of all scattering points. In addition, the dielectric parameter of human skin, which is frequency dependent, is used to calculate the reflection coefficient. Signals generated from the simulation software were validated by reconstructing the whole-body images by using the fast Fourier transform algorithm. The simulation data were compared with that from HFSS SBR+ and real measurements. The obtained image and post data analysis demonstrated the accuracy of the presented simulation technique was acceptable and can be used for rapid millimeter-wave body-scan modelling.
期刊介绍:
The IEEE Transactions on Computational Imaging will publish articles where computation plays an integral role in the image formation process. Papers will cover all areas of computational imaging ranging from fundamental theoretical methods to the latest innovative computational imaging system designs. Topics of interest will include advanced algorithms and mathematical techniques, model-based data inversion, methods for image and signal recovery from sparse and incomplete data, techniques for non-traditional sensing of image data, methods for dynamic information acquisition and extraction from imaging sensors, software and hardware for efficient computation in imaging systems, and highly novel imaging system design.