Guadalupe Di Cola, Anabella C. Fantilli, Gonzalo Rodríguez-Lombardi, Kevin A. Rucci, Gonzalo Castro, Santiago Mirazo, Silvia Viviana Nates, María Belén Pisano, Viviana E. Ré
{"title":"Assessment of Hepatitis E Virus RNA Detection in Meat Samples: Optimization of Pre-analytical Conditions","authors":"Guadalupe Di Cola, Anabella C. Fantilli, Gonzalo Rodríguez-Lombardi, Kevin A. Rucci, Gonzalo Castro, Santiago Mirazo, Silvia Viviana Nates, María Belén Pisano, Viviana E. Ré","doi":"10.1007/s12560-024-09617-z","DOIUrl":null,"url":null,"abstract":"<div><p>Hepatitis E virus (HEV) is primarily transmitted via the fecal–oral route and is considered an anthropozoonosis. Genotypes with zoonotic potential (mainly HEV-3 and HEV-4) can be transmitted through the consumption of raw or undercooked pork, wild boar, deer meat, or processed products. This study aims to explore methodologies for processing meat samples to establish a protocol for HEV detection in meat. The analysis of pre-analytical conditions involved comparing homogenization with PBS versus TRIzol, comparing tissue disruption methods (ultra-turrax versus mortar and pestle), and assessing nucleic acid extraction techniques (spin columns and magnetic beads) across three types of artificially contaminated meat matrices: pork, salmon (fish-meat), and salami. Each test included a process control virus (PP7) and an HEV transcript. Molecular detection was performed via RT-qPCR. Results indicated that TRIzol provided better recovery rates for homogenization, while spin columns were the most effective option for RNA extraction. Both the ultra-turrax homogenizer and the mortar-pestle methods were effective for pork and fish-meat homogenization, while the use of the UT yielded superior results for salami. HEV recovery rates were 36.7%, 26.3%, and 34.1% for salami, salmon, and pork meat, respectively. In conclusion, we reached a simple and reliable protocol for the detection of RNA-HEV from three meat matrices. This method, which includes homogenization with TRIzol, mechanical tissue disruption, and RNA extraction using spin columns followed by real-time PCR, can be applied in future studies to evaluate HEV prevalence in food sources and contribute to the discussion about HEV detection methodologies.</p></div>","PeriodicalId":563,"journal":{"name":"Food and Environmental Virology","volume":"17 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Environmental Virology","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s12560-024-09617-z","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Hepatitis E virus (HEV) is primarily transmitted via the fecal–oral route and is considered an anthropozoonosis. Genotypes with zoonotic potential (mainly HEV-3 and HEV-4) can be transmitted through the consumption of raw or undercooked pork, wild boar, deer meat, or processed products. This study aims to explore methodologies for processing meat samples to establish a protocol for HEV detection in meat. The analysis of pre-analytical conditions involved comparing homogenization with PBS versus TRIzol, comparing tissue disruption methods (ultra-turrax versus mortar and pestle), and assessing nucleic acid extraction techniques (spin columns and magnetic beads) across three types of artificially contaminated meat matrices: pork, salmon (fish-meat), and salami. Each test included a process control virus (PP7) and an HEV transcript. Molecular detection was performed via RT-qPCR. Results indicated that TRIzol provided better recovery rates for homogenization, while spin columns were the most effective option for RNA extraction. Both the ultra-turrax homogenizer and the mortar-pestle methods were effective for pork and fish-meat homogenization, while the use of the UT yielded superior results for salami. HEV recovery rates were 36.7%, 26.3%, and 34.1% for salami, salmon, and pork meat, respectively. In conclusion, we reached a simple and reliable protocol for the detection of RNA-HEV from three meat matrices. This method, which includes homogenization with TRIzol, mechanical tissue disruption, and RNA extraction using spin columns followed by real-time PCR, can be applied in future studies to evaluate HEV prevalence in food sources and contribute to the discussion about HEV detection methodologies.
期刊介绍:
Food and Environmental Virology publishes original articles, notes and review articles on any aspect relating to the transmission of pathogenic viruses via the environment (water, air, soil etc.) and foods. This includes epidemiological studies, identification of novel or emerging pathogens, methods of analysis or characterisation, studies on survival and elimination, and development of procedural controls for industrial processes, e.g. HACCP plans. The journal will cover all aspects of this important area, and encompass studies on any human, animal, and plant pathogenic virus which is capable of transmission via the environment or food.