Optimization of laser powder bed fusion process parameter for the fabrication of AlSi12 using NSGA-II and Pareto search algorithm Optimierung der Prozessparameter für das Laserstrahl-Pulverbett-Schmelzen zur Herstellung von AlSi12 mit NSGA-II und Pareto-Suchalgorithmus

IF 1.2 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Materialwissenschaft und Werkstofftechnik Pub Date : 2024-10-22 DOI:10.1002/mawe.202400098
S. K. Balla, R. K. Konki, M. Manjaiah, A. Joshi
{"title":"Optimization of laser powder bed fusion process parameter for the fabrication of AlSi12 using NSGA-II and Pareto search algorithm\n Optimierung der Prozessparameter für das Laserstrahl-Pulverbett-Schmelzen zur Herstellung von AlSi12 mit NSGA-II und Pareto-Suchalgorithmus","authors":"S. K. Balla,&nbsp;R. K. Konki,&nbsp;M. Manjaiah,&nbsp;A. Joshi","doi":"10.1002/mawe.202400098","DOIUrl":null,"url":null,"abstract":"<p>Additive manufacturing, notably laser powder bed fusion (LPBF), excels in producing complex geometries and is widely used in the automotive, aerospace, and naval industries. Laser powder bed fusion enables the creation of components with the required stiffness and strength at a lighter weight than traditional manufacturing methods. Aluminium alloys are particularly promising for laser powder bed fusion in the automotive and aerospace sectors. To enhance the effectiveness of laser powder bed fusion-produced components, optimized process parameters must be designed for specific materials. This study investigates the influence of processing parameters, scan speed, scan strategy, and hatch space, on the relative density, surface roughness, and microhardness of AlSi12 samples fabricated by laser powder bed fusion. A Taguchi L27 orthogonal array was used to systematically analyze the effects of these parameters. A regression model was developed and evaluated through analysis of variance using signal-to-noise (S/N) ratios to identify optimal parameter values. Results indicated that the scan pattern significantly affects relative density, while hatch space impacts surface roughness and microhardness. Optimal solutions were obtained through multi-objective optimization using the non-dominated sorting genetic algorithm (NSGA-II) and Pareto search algorithms. Experimental validation showed average errors of 0.483 % and 0.461 % for NSGA-II and Pareto search algorithms, respectively.</p>","PeriodicalId":18366,"journal":{"name":"Materialwissenschaft und Werkstofftechnik","volume":"55 11","pages":"1575-1589"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialwissenschaft und Werkstofftechnik","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mawe.202400098","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Additive manufacturing, notably laser powder bed fusion (LPBF), excels in producing complex geometries and is widely used in the automotive, aerospace, and naval industries. Laser powder bed fusion enables the creation of components with the required stiffness and strength at a lighter weight than traditional manufacturing methods. Aluminium alloys are particularly promising for laser powder bed fusion in the automotive and aerospace sectors. To enhance the effectiveness of laser powder bed fusion-produced components, optimized process parameters must be designed for specific materials. This study investigates the influence of processing parameters, scan speed, scan strategy, and hatch space, on the relative density, surface roughness, and microhardness of AlSi12 samples fabricated by laser powder bed fusion. A Taguchi L27 orthogonal array was used to systematically analyze the effects of these parameters. A regression model was developed and evaluated through analysis of variance using signal-to-noise (S/N) ratios to identify optimal parameter values. Results indicated that the scan pattern significantly affects relative density, while hatch space impacts surface roughness and microhardness. Optimal solutions were obtained through multi-objective optimization using the non-dominated sorting genetic algorithm (NSGA-II) and Pareto search algorithms. Experimental validation showed average errors of 0.483 % and 0.461 % for NSGA-II and Pareto search algorithms, respectively.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 NSGA-II 和帕累托搜索算法优化制造 AlSi12 的激光粉末熔床工艺参数 利用 NSGA-II 和帕累托搜索算法优化制造 AlSi12 的激光粉末熔床工艺参数
快速成型技术,特别是激光粉末床熔融技术(LPBF),擅长制造复杂的几何形状,并广泛应用于汽车、航空航天和海军工业。与传统制造方法相比,激光粉末床熔融技术能以更轻的重量制造出具有所需刚度和强度的部件。在汽车和航空航天领域,铝合金在激光粉末床熔融技术中的应用前景尤为广阔。为了提高激光粉末床熔融技术生产部件的效果,必须针对特定材料设计优化的工艺参数。本研究探讨了加工参数、扫描速度、扫描策略和舱口空间对激光粉末床熔融技术制造的 AlSi12 样品的相对密度、表面粗糙度和显微硬度的影响。采用田口 L27 正交阵列系统分析了这些参数的影响。通过信噪比(S/N)进行方差分析,建立并评估了回归模型,以确定最佳参数值。结果表明,扫描模式对相对密度有显著影响,而舱口空间对表面粗糙度和显微硬度有影响。通过使用非支配排序遗传算法(NSGA-II)和帕累托搜索算法进行多目标优化,获得了最佳解决方案。实验验证表明,NSGA-II 和帕累托搜索算法的平均误差分别为 0.483 % 和 0.461 %。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materialwissenschaft und Werkstofftechnik
Materialwissenschaft und Werkstofftechnik 工程技术-材料科学:综合
CiteScore
2.10
自引率
9.10%
发文量
154
审稿时长
4-8 weeks
期刊介绍: Materialwissenschaft und Werkstofftechnik provides fundamental and practical information for those concerned with materials development, manufacture, and testing. Both technical and economic aspects are taken into consideration in order to facilitate choice of the material that best suits the purpose at hand. Review articles summarize new developments and offer fresh insight into the various aspects of the discipline. Recent results regarding material selection, use and testing are described in original articles, which also deal with failure treatment and investigation. Abstracts of new publications from other journals as well as lectures presented at meetings and reports about forthcoming events round off the journal.
期刊最新文献
Deep drawing of coated aluminium sheets: Experimental and numerical study Tiefziehen von beschichteten Aluminiumblechen: Experimentelle und numerische Untersuchungen Materialwiss. Werkstofftech. 11/2024 Impressum: Materialwiss. Werkstofftech. 11/2024 Cover Picture: (Materialwiss. Werkstofftech. 11/2024) Investigating the influence of ferric oxide grade alumino-silicate cenosphere particulates and heat treatment on the microstructural evolution and mechanical properties of Al6061/ferric oxide alumino-silicate cenosphere (x weight %) composite Untersuchung des Einflusses von Eisenoxid-Aluminium-Silikat-Cenosphärenpartikeln und Wärmebehandlung auf die mikrostrukturelle Entwicklung und die mechanischen Eigenschaften von Al6061/Eisenoxid-Aluminium-Silikat-Cenosphäre (x Gew.–%)-Verbundwerkstoff
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1