{"title":"Baliosperoid A attenuates lipopolysaccharide-induced acute lung injury by targeting SHP2 to inhibit inflammation and oxidative stress.","authors":"Yue Li, Lirong Zhao, Zhaoxia Liu, Ying Chen, Xiaoqin Li, Dongrong Zhu, Liren Liu","doi":"10.1016/j.bioorg.2024.107982","DOIUrl":null,"url":null,"abstract":"<p><p>Acute lung injury (ALI) remains a devastating clinical condition with limited therapeutic options. While Src homology-2 domain-containing protein tyrosine phosphatase 2 (SHP2) has emerged as a critical mediator in ALI pathogenesis, effective SHP2-targeting therapeutics remain largely elusive. Baliospermum solanifolium (Burm.) is a traditional medicine used to treat various diseases such as asthma, edema, bronchitis, jaundice, and constipation. Baliosperoid A (BA), a diterpenoid compound derived from Baliospermum solanifolium's roots, exhibits potent NO inhibitory activity in RAW264.7 cells. However, its anti-inflammatory activity and potential targets have never been reported. Here, we report BA acts as a selective SHP2 inhibitor with remarkable therapeutic potential against ALI. Through comprehensive molecular and functional analyses, we demonstrate that BA directly binds to and inhibits SHP2 phosphatase activity with high specificity (IC<sub>50</sub> = 1.638 ± 0.324 μM). Mechanistically, BA orchestrates a dual-action therapeutic effect by simultaneously suppressing inflammatory cascades through SHP2-mediated MAPK and NF-κB pathway inhibition while activating the Nrf2-dependent antioxidant response. In preclinical models of ALI and sepsis, BA treatment significantly improved survival rates, preserved lung architecture, and prevented multi-organ dysfunction. Notably, BA demonstrated superior efficacy to the existing SHP2 inhibitor SHP099, particularly in sepsis survival outcomes (90 % vs 50 % survival at 24 h). Our findings not only identify BA as a promising therapeutic candidate for ALI but also establish a novel paradigm for targeting SHP2 in inflammatory diseases.</p>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":"153 ","pages":"107982"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.bioorg.2024.107982","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute lung injury (ALI) remains a devastating clinical condition with limited therapeutic options. While Src homology-2 domain-containing protein tyrosine phosphatase 2 (SHP2) has emerged as a critical mediator in ALI pathogenesis, effective SHP2-targeting therapeutics remain largely elusive. Baliospermum solanifolium (Burm.) is a traditional medicine used to treat various diseases such as asthma, edema, bronchitis, jaundice, and constipation. Baliosperoid A (BA), a diterpenoid compound derived from Baliospermum solanifolium's roots, exhibits potent NO inhibitory activity in RAW264.7 cells. However, its anti-inflammatory activity and potential targets have never been reported. Here, we report BA acts as a selective SHP2 inhibitor with remarkable therapeutic potential against ALI. Through comprehensive molecular and functional analyses, we demonstrate that BA directly binds to and inhibits SHP2 phosphatase activity with high specificity (IC50 = 1.638 ± 0.324 μM). Mechanistically, BA orchestrates a dual-action therapeutic effect by simultaneously suppressing inflammatory cascades through SHP2-mediated MAPK and NF-κB pathway inhibition while activating the Nrf2-dependent antioxidant response. In preclinical models of ALI and sepsis, BA treatment significantly improved survival rates, preserved lung architecture, and prevented multi-organ dysfunction. Notably, BA demonstrated superior efficacy to the existing SHP2 inhibitor SHP099, particularly in sepsis survival outcomes (90 % vs 50 % survival at 24 h). Our findings not only identify BA as a promising therapeutic candidate for ALI but also establish a novel paradigm for targeting SHP2 in inflammatory diseases.
期刊介绍:
Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry.
For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature.
The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.