Micelle-like Nanoparticles for Drug Delivery and Magnetically Enhanced Tumor Chemotherapy.

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2024-11-22 DOI:10.1021/acsbiomaterials.4c01897
Liqin Xie, Xirui Zuo, Beilei Wang, Dan Li, Wenke Chang, Shenglu Ji, Dan Ding
{"title":"Micelle-like Nanoparticles for Drug Delivery and Magnetically Enhanced Tumor Chemotherapy.","authors":"Liqin Xie, Xirui Zuo, Beilei Wang, Dan Li, Wenke Chang, Shenglu Ji, Dan Ding","doi":"10.1021/acsbiomaterials.4c01897","DOIUrl":null,"url":null,"abstract":"<p><p>Using the coordination bonds between transition metal atoms and electron-rich functional groups, we synthesized two kinds of micelle-like nanoparticles. Using magnetic Fe<sub>3</sub>O<sub>4</sub> as the core, poly(methyl methacrylate) (PMMA) and poly(acrylic acid) (PAA) brushes were grafted via activators regenerated by electron transfer for atom transfer radical polymerization (ARGET-ATRP), which formed micelle-like magnetic nanoparticles Fe<sub>3</sub>O<sub>4</sub>/PAA-PMMA with a hydrophobic outer layer and Fe<sub>3</sub>O<sub>4</sub>/PMMA-PAA with a hydrophilic outer layer. Both the micelle-like nanoparticles had amphiphilic properties and can be used to load hydrophilic or hydrophobic drugs. Even loaded with hydrophobic drugs, the micelle-like nanoparticles can still be dispersed in aqueous solution, and Fe<sub>3</sub>O<sub>4</sub>/PAA-PMMA had a higher loading content. As the drug carrier, these two micelle-like nanoparticles can be used for magnetically targeted drug delivery and magnetic resonance imaging due to superparamagnetic Fe<sub>3</sub>O<sub>4</sub>. In addition, due to the magnetic retention effect, the drug-loaded micelle-like nanoparticles remained at the tumor site, increasing the local drug concentration. At the same time, the drug-loaded micelle-like nanoparticles generated a magnetocaloric effect under the alternating magnetic field, which not only killed tumor cells by magnetic hyperthermia but also promoted the rapid release of drugs at the tumor site. In general, magnetically enhanced chemotherapy showed the best therapeutic effect on tumors.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01897","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Using the coordination bonds between transition metal atoms and electron-rich functional groups, we synthesized two kinds of micelle-like nanoparticles. Using magnetic Fe3O4 as the core, poly(methyl methacrylate) (PMMA) and poly(acrylic acid) (PAA) brushes were grafted via activators regenerated by electron transfer for atom transfer radical polymerization (ARGET-ATRP), which formed micelle-like magnetic nanoparticles Fe3O4/PAA-PMMA with a hydrophobic outer layer and Fe3O4/PMMA-PAA with a hydrophilic outer layer. Both the micelle-like nanoparticles had amphiphilic properties and can be used to load hydrophilic or hydrophobic drugs. Even loaded with hydrophobic drugs, the micelle-like nanoparticles can still be dispersed in aqueous solution, and Fe3O4/PAA-PMMA had a higher loading content. As the drug carrier, these two micelle-like nanoparticles can be used for magnetically targeted drug delivery and magnetic resonance imaging due to superparamagnetic Fe3O4. In addition, due to the magnetic retention effect, the drug-loaded micelle-like nanoparticles remained at the tumor site, increasing the local drug concentration. At the same time, the drug-loaded micelle-like nanoparticles generated a magnetocaloric effect under the alternating magnetic field, which not only killed tumor cells by magnetic hyperthermia but also promoted the rapid release of drugs at the tumor site. In general, magnetically enhanced chemotherapy showed the best therapeutic effect on tumors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于给药和磁增强肿瘤化疗的胶束状纳米粒子。
利用过渡金属原子与富电子官能团之间的配位键,我们合成了两种胶束状纳米粒子。以磁性 Fe3O4 为核心,通过原子转移自由基聚合(ARGET-ATPR)的电子转移再生活化剂接枝聚甲基丙烯酸甲酯(PMMA)和聚丙烯酸(PAA)刷,形成了外层疏水的胶束状磁性纳米粒子 Fe3O4/PAA-PMMA,以及外层亲水的 Fe3O4/PMMA-PAA。这两种胶束状纳米粒子都具有两亲性,可用于负载亲水或疏水药物。即使装载了疏水性药物,胶束状纳米粒子仍能分散在水溶液中,而且 Fe3O4/PAA-PMMA 的装载量更高。这两种胶束状纳米粒子作为药物载体,由于具有超顺磁性的 Fe3O4,可用于磁性靶向给药和磁共振成像。此外,由于磁性滞留效应,载药胶束状纳米粒子可留在肿瘤部位,提高局部药物浓度。同时,载药胶束状纳米粒子在交变磁场作用下产生磁热效应,不仅能通过磁热效应杀死肿瘤细胞,还能促进药物在肿瘤部位的快速释放。总体而言,磁增强化疗对肿瘤的治疗效果最佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
Innervated Coculture Device to Model Peripheral Nerve-Mediated Fibroblast Activation. Mechanical and Physical Characterization of a Biphasic 3D Printed Silk-Infilled Scaffold for Osteochondral Tissue Engineering. New Biocompatible Ti-MOF@hydroxyapatite Composite Boosted with Gentamicin for Postoperative Infection Control. Engineering Granular Hydrogels without Interparticle Cross-Linking to Support Multicellular Organization. Outer Membrane Vesicle-Cancer Hybrid Membrane Coating Indocyanine Green Nanoparticles for Enhancing Photothermal Therapy Efficacy in Tumors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1