Paulina M Getsy, Gregory A Coffee, James N Bates, Santhosh M Baby, James M Seckler, Lisa A Palmer, Stephen J Lewis
{"title":"Functional evidence that S-nitroso-L-cysteine may be a candidate carotid body neurotransmitter.","authors":"Paulina M Getsy, Gregory A Coffee, James N Bates, Santhosh M Baby, James M Seckler, Lisa A Palmer, Stephen J Lewis","doi":"10.1016/j.neuropharm.2024.110229","DOIUrl":null,"url":null,"abstract":"<p><p>The primary objective of the present study was to provide further evidence that the endogenous S-nitrosothiol, S-nitroso-L-cysteine (L-CSNO), plays an essential role in signaling the hypoxic ventilatory response (HVR) in rodents. Key findings were that (1) injection of L-CSNO (50 nmol/kg, IV) caused a pronounced increase in frequency of breathing (Freq), tidal volume (TV) and minute ventilation (MV) in naïve C57BL/6 mice, whereas injection of D-CSNO (50 nmol/kg, IV) elicited minimal responses; (2) L-CSNO elicited minor responses in (a) C57BL/6 mice with bilateral carotid sinus nerve transection (CSNX), (b) C57BL/6 mice treated neonatally with capsaicin (CAP) to eliminate small-diameter C-fibers, or (c) C57BL/6 mice receiving continuous infusion of L-CSNO receptor antagonists, S-methyl-L-cysteine and S-ethyl-L-cysteine (L-SMC + L-SEC, both at 5 μmol/kg/min, IV); and (3) injection of S-nitroso-glutathione (GSNO, 50 nmol/kg, IV) elicited pronounced ventilatory responses that were not inhibited by L-SMC + L-SEC. Subsequent exposure of naïve C57BL/6 mice to a hypoxic gas challenge (HXC; 10% O<sub>2</sub>, 90% N<sub>2</sub>) elicited pronounced increases in Freq, TV and MV that were subject to pronounced roll-off. These HXC responses were markedly reduced in CSNX, CAP, and L-SMC + L-SEC-infused C57BL/6 mice. Subsequent exposure of all C57BL/6 mice (naïve, CSNX, CAP, and L-SMC + L-SEC) to a hypercapnic gas challenge (5% CO<sub>2</sub>, 21% O<sub>2</sub>, 74% N<sub>2</sub>) elicited similar robust increases in Freq, TV and MV. Taken together, these findings provide evidence that an endogenous factor with pharmacodynamic properties similar to those of L-CSNO, rather than L-GSNO, mediates the HVR in male C57BL/6 mice.</p>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":" ","pages":"110229"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuropharm.2024.110229","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The primary objective of the present study was to provide further evidence that the endogenous S-nitrosothiol, S-nitroso-L-cysteine (L-CSNO), plays an essential role in signaling the hypoxic ventilatory response (HVR) in rodents. Key findings were that (1) injection of L-CSNO (50 nmol/kg, IV) caused a pronounced increase in frequency of breathing (Freq), tidal volume (TV) and minute ventilation (MV) in naïve C57BL/6 mice, whereas injection of D-CSNO (50 nmol/kg, IV) elicited minimal responses; (2) L-CSNO elicited minor responses in (a) C57BL/6 mice with bilateral carotid sinus nerve transection (CSNX), (b) C57BL/6 mice treated neonatally with capsaicin (CAP) to eliminate small-diameter C-fibers, or (c) C57BL/6 mice receiving continuous infusion of L-CSNO receptor antagonists, S-methyl-L-cysteine and S-ethyl-L-cysteine (L-SMC + L-SEC, both at 5 μmol/kg/min, IV); and (3) injection of S-nitroso-glutathione (GSNO, 50 nmol/kg, IV) elicited pronounced ventilatory responses that were not inhibited by L-SMC + L-SEC. Subsequent exposure of naïve C57BL/6 mice to a hypoxic gas challenge (HXC; 10% O2, 90% N2) elicited pronounced increases in Freq, TV and MV that were subject to pronounced roll-off. These HXC responses were markedly reduced in CSNX, CAP, and L-SMC + L-SEC-infused C57BL/6 mice. Subsequent exposure of all C57BL/6 mice (naïve, CSNX, CAP, and L-SMC + L-SEC) to a hypercapnic gas challenge (5% CO2, 21% O2, 74% N2) elicited similar robust increases in Freq, TV and MV. Taken together, these findings provide evidence that an endogenous factor with pharmacodynamic properties similar to those of L-CSNO, rather than L-GSNO, mediates the HVR in male C57BL/6 mice.
期刊介绍:
Neuropharmacology publishes high quality, original research and review articles within the discipline of neuroscience, especially articles with a neuropharmacological component. However, papers within any area of neuroscience will be considered. The journal does not usually accept clinical research, although preclinical neuropharmacological studies in humans may be considered. The journal only considers submissions in which the chemical structures and compositions of experimental agents are readily available in the literature or disclosed by the authors in the submitted manuscript. Only in exceptional circumstances will natural products be considered, and then only if the preparation is well defined by scientific means. Neuropharmacology publishes articles of any length (original research and reviews).