Naseem Akhter, Musarat Batool, Asma Yaqoob, Muhammad Shahid, Faqeer Muhammad, Jallat Khan, Muhammad Ahmad Mudassir, Majeeda Rasheed, Sana Javed, Dunia A Al Farraj, Inshad Alzaidi, Rashid Iqbal, Urszula Malaga-Toboła, Marek Gancarz
{"title":"Potential biological application of silver nanoparticles synthesized from Citrus paradisi leaves.","authors":"Naseem Akhter, Musarat Batool, Asma Yaqoob, Muhammad Shahid, Faqeer Muhammad, Jallat Khan, Muhammad Ahmad Mudassir, Majeeda Rasheed, Sana Javed, Dunia A Al Farraj, Inshad Alzaidi, Rashid Iqbal, Urszula Malaga-Toboła, Marek Gancarz","doi":"10.1038/s41598-024-79514-9","DOIUrl":null,"url":null,"abstract":"<p><p>Developing sustainable and eco-friendly methods for nanoparticle (NP) production in an era of environmental consciousness is crucial. This study introduces a novel approach to synthesizing silver (Ag) NPs using Citrus paradisi leaves extract (CPLE) as a green precursor at optimum conditions of the AgNO<sub>3</sub> (2 mM) with CPLE in 1:3 ratio, at pH 14 and 80 °C temperature for reaction time of 4 h. The CP@AgNPs were formed and stabilized by Naringen, a major Citrus paradisi component. CP@AgNPs were thoroughly characterized through ultraviolet-visible (UV-vis) and Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, and field emission scanning electron microscopy (FE-SEM) imaging techniques. CP@AgNPs demonstrated SPR peak at 450 nm, face cubic crystal structure, the average size of 8 nm, rod-shaped particle adsorbed on quasi-spherical shaped agglomerated NPs, significantly impacting both environmental and biomedical fields. In the catalytic degradation experiment, an application for environment pollutant reducer, CP@AgNPs, achieved an impressive 85% degradation efficiency of the methyl orange (MO) dye, showcasing their potential as a sustainable solution for wastewater treatment. Additionally, CP@AgNPs exhibited potent anti-biofilm properties, with half maximal inhibitory concentration (IC<sub>50</sub>) values of 0.13 and 0.12 mg/ml against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), respectively, indicating their promise in addressing biofilm-related issues in healthcare and industrial settings. CP@AgNPs also displayed exceptional antioxidant potential with IC<sub>50</sub> values of 2.02, 0.07, and 0.035 mg/ml for CPLE, CP@AgNPs, and ascorbic acid, respectively, in scavenging DPPH radical, suggesting their utility in biomedical applications for mitigating oxidative stress. Notably, the bio-activity results of CP@AgNPs surpassed those of CP leaf extract, highlighting the enhanced properties achieved through this green synthesis approach. This study provides a sustainable and environmental remediation to biomedical science.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"29028"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584760/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-79514-9","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Developing sustainable and eco-friendly methods for nanoparticle (NP) production in an era of environmental consciousness is crucial. This study introduces a novel approach to synthesizing silver (Ag) NPs using Citrus paradisi leaves extract (CPLE) as a green precursor at optimum conditions of the AgNO3 (2 mM) with CPLE in 1:3 ratio, at pH 14 and 80 °C temperature for reaction time of 4 h. The CP@AgNPs were formed and stabilized by Naringen, a major Citrus paradisi component. CP@AgNPs were thoroughly characterized through ultraviolet-visible (UV-vis) and Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, and field emission scanning electron microscopy (FE-SEM) imaging techniques. CP@AgNPs demonstrated SPR peak at 450 nm, face cubic crystal structure, the average size of 8 nm, rod-shaped particle adsorbed on quasi-spherical shaped agglomerated NPs, significantly impacting both environmental and biomedical fields. In the catalytic degradation experiment, an application for environment pollutant reducer, CP@AgNPs, achieved an impressive 85% degradation efficiency of the methyl orange (MO) dye, showcasing their potential as a sustainable solution for wastewater treatment. Additionally, CP@AgNPs exhibited potent anti-biofilm properties, with half maximal inhibitory concentration (IC50) values of 0.13 and 0.12 mg/ml against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), respectively, indicating their promise in addressing biofilm-related issues in healthcare and industrial settings. CP@AgNPs also displayed exceptional antioxidant potential with IC50 values of 2.02, 0.07, and 0.035 mg/ml for CPLE, CP@AgNPs, and ascorbic acid, respectively, in scavenging DPPH radical, suggesting their utility in biomedical applications for mitigating oxidative stress. Notably, the bio-activity results of CP@AgNPs surpassed those of CP leaf extract, highlighting the enhanced properties achieved through this green synthesis approach. This study provides a sustainable and environmental remediation to biomedical science.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.