Active disturbance rejection control with adaptive RBF neural network for a permanent magnet spherical motor

IF 6.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS ISA transactions Pub Date : 2025-01-01 DOI:10.1016/j.isatra.2024.11.020
Xiwen Guo , Ao Tan , Qunjing Wang , Guoli Li , Yuming Sun , Qiyong Yang
{"title":"Active disturbance rejection control with adaptive RBF neural network for a permanent magnet spherical motor","authors":"Xiwen Guo ,&nbsp;Ao Tan ,&nbsp;Qunjing Wang ,&nbsp;Guoli Li ,&nbsp;Yuming Sun ,&nbsp;Qiyong Yang","doi":"10.1016/j.isatra.2024.11.020","DOIUrl":null,"url":null,"abstract":"<div><div>In response to the issues of low tracking accuracy and poor robustness in the trajectory tracking control of a permanent magnet spherical motor (PMSpM), an active disturbance rejection control (ADRC) scheme combining neural networks is put forward in this research. The unknown total disturbance is approximated by employing a radial basis function (RBF) neural network, with weights updated by an adaptive law and compensated for through the nonlinear feedback loop. This approach addresses the problem of performance degradation of the extended state observer under severe total disturbance, thereby ensuring accurate tracking of the PMSpM. Comparative simulations are accomplished to evaluate the performance of the RBF-ADRC scheme in enhancing disturbance rejection capability and robustness. Experimental results from the planar circular motion experiment on the PMSpM test platform validate the application value of the scheme.</div></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"156 ","pages":"Pages 678-688"},"PeriodicalIF":6.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057824005329","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In response to the issues of low tracking accuracy and poor robustness in the trajectory tracking control of a permanent magnet spherical motor (PMSpM), an active disturbance rejection control (ADRC) scheme combining neural networks is put forward in this research. The unknown total disturbance is approximated by employing a radial basis function (RBF) neural network, with weights updated by an adaptive law and compensated for through the nonlinear feedback loop. This approach addresses the problem of performance degradation of the extended state observer under severe total disturbance, thereby ensuring accurate tracking of the PMSpM. Comparative simulations are accomplished to evaluate the performance of the RBF-ADRC scheme in enhancing disturbance rejection capability and robustness. Experimental results from the planar circular motion experiment on the PMSpM test platform validate the application value of the scheme.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用自适应 RBF 神经网络对永磁球形电机进行主动干扰抑制控制。
针对永磁球形电机(PMSpM)轨迹跟踪控制中跟踪精度低和鲁棒性差的问题,本研究提出了一种结合神经网络的主动干扰抑制控制(ADRC)方案。采用径向基函数(RBF)神经网络对未知总扰动进行近似,通过自适应法则更新权重,并通过非线性反馈回路进行补偿。这种方法解决了扩展状态观测器在严重总干扰下性能下降的问题,从而确保了 PMSpM 的精确跟踪。通过对比模拟,评估了 RBF-ADRC 方案在增强干扰抑制能力和鲁棒性方面的性能。在 PMSpM 测试平台上进行的平面圆周运动实验结果验证了该方案的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ISA transactions
ISA transactions 工程技术-工程:综合
CiteScore
11.70
自引率
12.30%
发文量
824
审稿时长
4.4 months
期刊介绍: ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.
期刊最新文献
Editorial Board The fast bearing diagnosis based on adaptive GSR of fault feature amplification in scale-transformed fractional oscillator An adaptive neural network approach for resilient leader-following consensus control of multi-agent systems under cyber-attacks MIMO ultra-local model-based adaptive enhanced model-free control using extremum-seeking for coupled mechatronic systems A robust hybrid estimation method for local bearing defect size based on analytical model and morphological analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1