Perla González-Pereyra, Oswaldo Sánchez-Lobato, Mario G. Martínez-Montalvo, Diana I. Ortega-Romero, Claudia I. Pérez-Díaz, Hugo Merchant, Luis A. Tellez, Pavel E. Rueda-Orozco
{"title":"Preconfigured cortico-thalamic neural dynamics constrain movement-associated thalamic activity","authors":"Perla González-Pereyra, Oswaldo Sánchez-Lobato, Mario G. Martínez-Montalvo, Diana I. Ortega-Romero, Claudia I. Pérez-Díaz, Hugo Merchant, Luis A. Tellez, Pavel E. Rueda-Orozco","doi":"10.1038/s41467-024-54742-9","DOIUrl":null,"url":null,"abstract":"<p>Neural preconfigured activity patterns (nPAPs), conceptualized as organized activity parcellated into groups of neurons, have been proposed as building blocks for cognitive and sensory processing. However, their existence and function in motor networks have been scarcely studied. Here, we explore the possibility that nPAPs are present in the motor thalamus (VL/VM) and their potential contribution to motor-related activity. To this end, we developed a preparation where VL/VM multiunitary activity could be robustly recorded in mouse behavior evoked by primary motor cortex (M1) optogenetic stimulation and forelimb movements. VL/VM-evoked activity was organized as rigid stereotypical activity patterns at the single and population levels. These activity patterns were unable to dynamically adapt to different temporal architectures of M1 stimulation. Moreover, they were experience-independent, present in virtually all animals, and pairs of neurons with high correlations during M1-stimulation also presented higher correlations during spontaneous activity, confirming their preconfigured nature. Finally, subpopulations expressing specific M1-evoked patterns also displayed specific movement-related patterns. Our data demonstrate that the behaviorally related identity of specific neural subpopulations is tightly linked to nPAPs.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"129 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54742-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Neural preconfigured activity patterns (nPAPs), conceptualized as organized activity parcellated into groups of neurons, have been proposed as building blocks for cognitive and sensory processing. However, their existence and function in motor networks have been scarcely studied. Here, we explore the possibility that nPAPs are present in the motor thalamus (VL/VM) and their potential contribution to motor-related activity. To this end, we developed a preparation where VL/VM multiunitary activity could be robustly recorded in mouse behavior evoked by primary motor cortex (M1) optogenetic stimulation and forelimb movements. VL/VM-evoked activity was organized as rigid stereotypical activity patterns at the single and population levels. These activity patterns were unable to dynamically adapt to different temporal architectures of M1 stimulation. Moreover, they were experience-independent, present in virtually all animals, and pairs of neurons with high correlations during M1-stimulation also presented higher correlations during spontaneous activity, confirming their preconfigured nature. Finally, subpopulations expressing specific M1-evoked patterns also displayed specific movement-related patterns. Our data demonstrate that the behaviorally related identity of specific neural subpopulations is tightly linked to nPAPs.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.