Preparation and characterization of cellulose-reinforced PLA/PHA compounds

IF 2.6 4区 化学 Q3 POLYMER SCIENCE Journal of Polymer Research Pub Date : 2024-11-25 DOI:10.1007/s10965-024-04202-1
Sora Noh, Hakyoung Sung, Jong Ryang Kim, Eunhye Lee, Ki Chull Yoon, Jeongsu Kim, Sook Hee Ku
{"title":"Preparation and characterization of cellulose-reinforced PLA/PHA compounds","authors":"Sora Noh,&nbsp;Hakyoung Sung,&nbsp;Jong Ryang Kim,&nbsp;Eunhye Lee,&nbsp;Ki Chull Yoon,&nbsp;Jeongsu Kim,&nbsp;Sook Hee Ku","doi":"10.1007/s10965-024-04202-1","DOIUrl":null,"url":null,"abstract":"<div><p>Polylactic acid (PLA) shows high potential for various fields such as food packaging and biomedical applications due to its biodegradability and low toxicity. However, the shortcomings including brittleness and low thermal stability limit its real applications. In this study, we fabricated PLA/polyhydroxyalkanoate (PHA) compound to overcome the brittleness of PLA. Then we investigated the effects of cellulose, derived from paper waste, on the thermal and mechanical properties of PLA/PHA compounds. While cellulose negligibly affected the glass transition temperatures of PLA and PHA, the cold crystallization temperature of PLA was reduced and its degree of crystallization was increased, after the addition of cellulose. With the increase of cellulose contents, the reduced tensile strength, the increased elastic modulus, and the reduced elongation at break of the compounds were observed, attributing to the aggregation formation of cellulose. Heat deflection temperature of the compounds was raised after the addition of cellulose.</p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":"31 12","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10965-024-04202-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Polylactic acid (PLA) shows high potential for various fields such as food packaging and biomedical applications due to its biodegradability and low toxicity. However, the shortcomings including brittleness and low thermal stability limit its real applications. In this study, we fabricated PLA/polyhydroxyalkanoate (PHA) compound to overcome the brittleness of PLA. Then we investigated the effects of cellulose, derived from paper waste, on the thermal and mechanical properties of PLA/PHA compounds. While cellulose negligibly affected the glass transition temperatures of PLA and PHA, the cold crystallization temperature of PLA was reduced and its degree of crystallization was increased, after the addition of cellulose. With the increase of cellulose contents, the reduced tensile strength, the increased elastic modulus, and the reduced elongation at break of the compounds were observed, attributing to the aggregation formation of cellulose. Heat deflection temperature of the compounds was raised after the addition of cellulose.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纤维素增强聚乳酸/PHA 复合物的制备与表征
聚乳酸(PLA)因其生物降解性和低毒性,在食品包装和生物医学应用等多个领域显示出巨大潜力。然而,脆性和低热稳定性等缺点限制了其实际应用。在本研究中,我们制备了聚乳酸/聚羟基烷酸(PHA)化合物,以克服聚乳酸的脆性。然后,我们研究了从废纸中提取的纤维素对 PLA/PHA 复合物的热性能和机械性能的影响。虽然纤维素对聚乳酸和 PHA 的玻璃化转变温度的影响微乎其微,但加入纤维素后,聚乳酸的冷结晶温度降低了,结晶度增加了。随着纤维素含量的增加,观察到化合物的拉伸强度降低、弹性模量增加和断裂伸长率降低,这归因于纤维素的聚集形成。添加纤维素后,化合物的热变形温度升高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Polymer Research
Journal of Polymer Research 化学-高分子科学
CiteScore
4.70
自引率
7.10%
发文量
472
审稿时长
3.6 months
期刊介绍: Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology. As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology, including: polymer synthesis; polymer reactions; polymerization kinetics; polymer physics; morphology; structure-property relationships; polymer analysis and characterization; physical and mechanical properties; electrical and optical properties; polymer processing and rheology; application of polymers; supramolecular science of polymers; polymer composites.
期刊最新文献
Easily recyclable magnetic polyacrylamide/sodium alginate/Fe3O4@ZIF-8 hydrogel beads for effective removal of Congo Red Preparation and characterization of cellulose-reinforced PLA/PHA compounds Facile fabrication of PPy/MWCNTs composites with tunable dielectric properties and their superior electromagnetic wave absorbing performance Comparative mechanical and morphological characteristics of an innovative hybrid composite of vetiver and jute Microcellular foamed bilayer iPP/CNTs-HDPE/CNTs nanocomposites for electromagnetic interference shielding application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1