Kechen Shu , Shitong Mao , Zhenwei Zhang , James L. Coyle , Ervin Sejdić
{"title":"Recent advancements and future directions in automatic swallowing analysis via videofluoroscopy: A review","authors":"Kechen Shu , Shitong Mao , Zhenwei Zhang , James L. Coyle , Ervin Sejdić","doi":"10.1016/j.cmpb.2024.108505","DOIUrl":null,"url":null,"abstract":"<div><div>Videofluoroscopic swallowing studies (VFSS) capture the complex anatomy and physiology contributing to bolus transport and airway protection during swallowing. While clinical assessment of VFSS can be affected by evaluators subjectivity and variability in evaluation protocols, many efforts have been dedicated to developing methods to ensure consistent measures and reliable analyses of swallowing physiology using advanced computer-assisted methods. Latest advances in computer vision, pattern recognition, and deep learning technologies provide new paradigms to explore and extract information from VFSS recordings. The literature search was conducted on four bibliographic databases with exclusive focus on automatic videofluoroscopic analyses. We identified 46 studies that employ state-of-the-art image processing techniques to solve VFSS analytical tasks including anatomical structure detection, bolus contrast segmentation, and kinematic event recognition. Advanced computer vision and deep learning techniques have enabled fully automatic swallowing analysis and abnormality detection, resulting in improved accuracy and unprecedented efficiency in swallowing assessment. By establishing this review of image processing techniques applied to automatic swallowing analysis, we intend to demonstrate the current challenges in VFSS analyses and provide insight into future directions in developing more accurate and clinically explainable algorithms.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"259 ","pages":"Article 108505"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016926072400498X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Videofluoroscopic swallowing studies (VFSS) capture the complex anatomy and physiology contributing to bolus transport and airway protection during swallowing. While clinical assessment of VFSS can be affected by evaluators subjectivity and variability in evaluation protocols, many efforts have been dedicated to developing methods to ensure consistent measures and reliable analyses of swallowing physiology using advanced computer-assisted methods. Latest advances in computer vision, pattern recognition, and deep learning technologies provide new paradigms to explore and extract information from VFSS recordings. The literature search was conducted on four bibliographic databases with exclusive focus on automatic videofluoroscopic analyses. We identified 46 studies that employ state-of-the-art image processing techniques to solve VFSS analytical tasks including anatomical structure detection, bolus contrast segmentation, and kinematic event recognition. Advanced computer vision and deep learning techniques have enabled fully automatic swallowing analysis and abnormality detection, resulting in improved accuracy and unprecedented efficiency in swallowing assessment. By establishing this review of image processing techniques applied to automatic swallowing analysis, we intend to demonstrate the current challenges in VFSS analyses and provide insight into future directions in developing more accurate and clinically explainable algorithms.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.