Supervised multiple kernel learning approaches for multi-omics data integration.

IF 4 3区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Biodata Mining Pub Date : 2024-11-23 DOI:10.1186/s13040-024-00406-9
Mitja Briscik, Gabriele Tazza, László Vidács, Marie-Agnès Dillies, Sébastien Déjean
{"title":"Supervised multiple kernel learning approaches for multi-omics data integration.","authors":"Mitja Briscik, Gabriele Tazza, László Vidács, Marie-Agnès Dillies, Sébastien Déjean","doi":"10.1186/s13040-024-00406-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Advances in high-throughput technologies have originated an ever-increasing availability of omics datasets. The integration of multiple heterogeneous data sources is currently an issue for biology and bioinformatics. Multiple kernel learning (MKL) has shown to be a flexible and valid approach to consider the diverse nature of multi-omics inputs, despite being an underused tool in genomic data mining.</p><p><strong>Results: </strong>We provide novel MKL approaches based on different kernel fusion strategies. To learn from the meta-kernel of input kernels, we adapted unsupervised integration algorithms for supervised tasks with support vector machines. We also tested deep learning architectures for kernel fusion and classification. The results show that MKL-based models can outperform more complex, state-of-the-art, supervised multi-omics integrative approaches.</p><p><strong>Conclusion: </strong>Multiple kernel learning offers a natural framework for predictive models in multi-omics data. It proved to provide a fast and reliable solution that can compete with and outperform more complex architectures. Our results offer a direction for bio-data mining research, biomarker discovery and further development of methods for heterogeneous data integration.</p>","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":"17 1","pages":"53"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585117/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-024-00406-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Advances in high-throughput technologies have originated an ever-increasing availability of omics datasets. The integration of multiple heterogeneous data sources is currently an issue for biology and bioinformatics. Multiple kernel learning (MKL) has shown to be a flexible and valid approach to consider the diverse nature of multi-omics inputs, despite being an underused tool in genomic data mining.

Results: We provide novel MKL approaches based on different kernel fusion strategies. To learn from the meta-kernel of input kernels, we adapted unsupervised integration algorithms for supervised tasks with support vector machines. We also tested deep learning architectures for kernel fusion and classification. The results show that MKL-based models can outperform more complex, state-of-the-art, supervised multi-omics integrative approaches.

Conclusion: Multiple kernel learning offers a natural framework for predictive models in multi-omics data. It proved to provide a fast and reliable solution that can compete with and outperform more complex architectures. Our results offer a direction for bio-data mining research, biomarker discovery and further development of methods for heterogeneous data integration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于多组学数据整合的有监督多核学习方法。
背景:高通量技术的进步带来了越来越多的组学数据集。整合多种异构数据源是当前生物学和生物信息学面临的一个问题。多重内核学习(MKL)已被证明是一种灵活有效的方法,可用于考虑多组学输入的多样性,尽管它在基因组数据挖掘中尚未得到充分利用:我们提供了基于不同核融合策略的新型 MKL 方法。为了从输入内核的元内核中学习,我们调整了无监督整合算法,用于支持向量机的监督任务。我们还测试了用于内核融合和分类的深度学习架构。结果表明,基于 MKL 的模型可以超越更复杂、更先进的有监督多组学整合方法:多核学习为多组学数据预测模型提供了一个自然框架。事实证明,它提供了一种快速、可靠的解决方案,可以与更复杂的架构相媲美,甚至更胜一筹。我们的研究结果为生物数据挖掘研究、生物标记物发现以及异构数据整合方法的进一步发展提供了一个方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biodata Mining
Biodata Mining MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
7.90
自引率
0.00%
发文量
28
审稿时长
23 weeks
期刊介绍: BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data. Topical areas include, but are not limited to: -Development, evaluation, and application of novel data mining and machine learning algorithms. -Adaptation, evaluation, and application of traditional data mining and machine learning algorithms. -Open-source software for the application of data mining and machine learning algorithms. -Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies. -Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.
期刊最新文献
Deep learning-based Emergency Department In-hospital Cardiac Arrest Score (Deep EDICAS) for early prediction of cardiac arrest and cardiopulmonary resuscitation in the emergency department. Supervised multiple kernel learning approaches for multi-omics data integration. Transcriptome-based network analysis related to regulatory T cells infiltration identified RCN1 as a potential biomarker for prognosis in clear cell renal cell carcinoma. Deciphering the tissue-specific functional effect of Alzheimer risk SNPs with deep genome annotation. Investigating potential drug targets for IgA nephropathy and membranous nephropathy through multi-queue plasma protein analysis: a Mendelian randomization study based on SMR and co-localization analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1