Optical soliton noninteraction transmission in optical communication systems

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED Applied Mathematics Letters Pub Date : 2024-11-19 DOI:10.1016/j.aml.2024.109383
Xin Zhang , Xiaofeng Li , Guoli Ma
{"title":"Optical soliton noninteraction transmission in optical communication systems","authors":"Xin Zhang ,&nbsp;Xiaofeng Li ,&nbsp;Guoli Ma","doi":"10.1016/j.aml.2024.109383","DOIUrl":null,"url":null,"abstract":"<div><div>The building of the national communication infrastructure and growing demand for data traffic both depend heavily on the advancement of optical soliton communication technology. In particular, by studying the interaction of optical solitons, some methods of controlling optical solitons can be explored to design more stable and efficient optical communication systems. In this paper, the interactions between optical solitons are studied based on the theory of generalized Schrödinger–Hirota equation. By studying the amplitude ratio, spacing and phase difference of the optical solitons, the interactions between the optical solitons occurring in the optical fiber transmission process are attenuated. The noninteraction transmission of optical solitons are realized with small spacing between them. The conclusions of this paper are not only of great significance for the in-depth understanding of the nature of optical soliton interactions, but also of great practical value for promoting the application of optical solitons in optical communications and other fields.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"162 ","pages":"Article 109383"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924004038","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The building of the national communication infrastructure and growing demand for data traffic both depend heavily on the advancement of optical soliton communication technology. In particular, by studying the interaction of optical solitons, some methods of controlling optical solitons can be explored to design more stable and efficient optical communication systems. In this paper, the interactions between optical solitons are studied based on the theory of generalized Schrödinger–Hirota equation. By studying the amplitude ratio, spacing and phase difference of the optical solitons, the interactions between the optical solitons occurring in the optical fiber transmission process are attenuated. The noninteraction transmission of optical solitons are realized with small spacing between them. The conclusions of this paper are not only of great significance for the in-depth understanding of the nature of optical soliton interactions, but also of great practical value for promoting the application of optical solitons in optical communications and other fields.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光通信系统中的光孤子非交互传输
国家通信基础设施的建设和日益增长的数据流量需求都在很大程度上依赖于光孤子通信技术的进步。特别是通过研究光孤子的相互作用,可以探索出一些控制光孤子的方法,从而设计出更稳定、更高效的光通信系统。本文基于广义薛定谔-希罗塔方程理论研究了光孤子之间的相互作用。通过研究光孤子的振幅比、间距和相位差,削弱了光纤传输过程中发生的光孤子之间的相互作用。在光孤子间距较小的情况下,实现了光孤子的非相互作用传输。本文的结论不仅对深入理解光孤子相互作用的本质具有重要意义,而且对促进光孤子在光通信等领域的应用也具有重要的实用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
期刊最新文献
Spatiotemporal dynamics in a three-component predator–prey model Global [formula omitted]-estimates and dissipative [formula omitted]-estimates of solutions for retarded reaction–diffusion equations Acceleration of self-consistent field iteration for Kohn–Sham density functional theory A quadrature formula on triangular domains via an interpolation-regression approach Normalized ground state solutions of the biharmonic Schrödinger equation with general mass supercritical nonlinearities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1