Structural Evolution and Optical Properties of Hydroxyfluorooxoborates MM′2n-1[B3O3F4(OH)]n (M = K, Cs, and Rb; M′ = K, NH4, and Cs; n = 1, 2, and 3)

IF 7.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Chemistry of Materials Pub Date : 2024-11-24 DOI:10.1021/acs.chemmater.4c02853
Huan Pei, Luyong Zhang, Huanhuan Cheng, Shibin Wang, Zhihua Yang, Fangfang Zhang, Shilie Pan
{"title":"Structural Evolution and Optical Properties of Hydroxyfluorooxoborates MM′2n-1[B3O3F4(OH)]n (M = K, Cs, and Rb; M′ = K, NH4, and Cs; n = 1, 2, and 3)","authors":"Huan Pei, Luyong Zhang, Huanhuan Cheng, Shibin Wang, Zhihua Yang, Fangfang Zhang, Shilie Pan","doi":"10.1021/acs.chemmater.4c02853","DOIUrl":null,"url":null,"abstract":"Four hydroxyfluorooxoborates, α-K<sub>2</sub>[B<sub>3</sub>O<sub>3</sub>F<sub>4</sub>(OH)] (<b>I</b>), β-K<sub>2</sub>[B<sub>3</sub>O<sub>3</sub>F<sub>4</sub>(OH)] (<b>II</b>), Cs(NH<sub>4</sub>)<sub>3</sub>[B<sub>3</sub>O<sub>3</sub>F<sub>4</sub>(OH)]<sub>2</sub> (<b>III</b>), and RbCs<sub>5</sub>[B<sub>3</sub>O<sub>3</sub>F<sub>4</sub>(OH)]<sub>3</sub> (<b>IV</b>), with identical fundamental building block (FBB) [B<sub>3</sub>O<sub>3</sub>F<sub>4</sub>(OH)]<sup>2–</sup>, were obtained successfully and characterized comprehensively. A phase transition between <b>I</b> and <b>II</b> was detected, which led to a space group evolution from centrosymmetric to noncentrosymmetric. The F<sup>–</sup> and OH<sup>–</sup> substitution effect was studied based on <b>II</b> and its hydroxyborate derivative K<sub>2</sub>[B<sub>3</sub>O<sub>3</sub>(OH)<sub>5</sub>], which reveals the corresponding changes in the band gap and the nonlinear optical properties. In addition, the cationic-size effect on the arrangement of the [B<sub>3</sub>O<sub>3</sub>F<sub>4</sub>(OH)]<sup>2–</sup> FBBs and the birefringent properties were discussed for the title compounds. This study contributes to the advancement of structural chemistry and sheds some light on the structure–property relationship studies of hydroxyfluorooxoborates.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"183 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.4c02853","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Four hydroxyfluorooxoborates, α-K2[B3O3F4(OH)] (I), β-K2[B3O3F4(OH)] (II), Cs(NH4)3[B3O3F4(OH)]2 (III), and RbCs5[B3O3F4(OH)]3 (IV), with identical fundamental building block (FBB) [B3O3F4(OH)]2–, were obtained successfully and characterized comprehensively. A phase transition between I and II was detected, which led to a space group evolution from centrosymmetric to noncentrosymmetric. The F and OH substitution effect was studied based on II and its hydroxyborate derivative K2[B3O3(OH)5], which reveals the corresponding changes in the band gap and the nonlinear optical properties. In addition, the cationic-size effect on the arrangement of the [B3O3F4(OH)]2– FBBs and the birefringent properties were discussed for the title compounds. This study contributes to the advancement of structural chemistry and sheds some light on the structure–property relationship studies of hydroxyfluorooxoborates.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
羟基氟氧硼烷 MM′2n-1[B3O3F4(OH)]n(M = K、Cs 和 Rb;M′ = K、NH4 和 Cs;n = 1、2 和 3)的结构演变和光学特性
成功获得并全面表征了四种羟基氟氧硼烷,α-K2[B3O3F4(OH)](I)、β-K2[B3O3F4(OH)](II)、Cs(NH4)3[B3O3F4(OH)]2(III)和 RbCs5[B3O3F4(OH)]3(IV),它们具有相同的基本结构单元(FBB)[B3O3F4(OH)]2-。在 I 和 II 之间发现了相变,导致空间群从中心对称演变为非中心对称。基于 II 及其羟基硼酸盐衍生物 K2[B3O3(OH)5],研究了 F- 和 OH- 取代效应,揭示了带隙和非线性光学性质的相应变化。此外,还讨论了阳离子大小对 [B3O3F4(OH)]2- FBBs 排列的影响以及标题化合物的双折射特性。这项研究有助于推动结构化学的发展,并为羟基氟氧硼烷的结构-性质关系研究提供了一些启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemistry of Materials
Chemistry of Materials 工程技术-材料科学:综合
CiteScore
14.10
自引率
5.80%
发文量
929
审稿时长
1.5 months
期刊介绍: The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.
期刊最新文献
Au-Acyclic Diaminocarbene-Linked Homochiral Covalent Organic Frameworks: Synthesis and Asymmetric Catalytic Application N-Heterocyclic Carbene Overlayers on Mild Steel Rapid Synthesis of a Green Emitting Phosphor by Sulfidation of Intermetallic EuAl2 and its Use in a Hybrid Material Topological Semimetal KAlGe with Novel Electronic Instability Frustrated Magnetism in a Gyroidal Metal–Organic Framework Magnet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1