Discovery and mechanism of K63-linkage-directed deubiquitinase activity in USP53

IF 12.9 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Nature chemical biology Pub Date : 2024-11-25 DOI:10.1038/s41589-024-01777-0
Kim Wendrich, Kai Gallant, Sarah Recknagel, Stavroula Petroulia, Nafizul Haque Kazi, Jan André Hane, Siska Führer, Karel Bezstarosti, Rachel O’Dea, Jeroen Demmers, Malte Gersch
{"title":"Discovery and mechanism of K63-linkage-directed deubiquitinase activity in USP53","authors":"Kim Wendrich, Kai Gallant, Sarah Recknagel, Stavroula Petroulia, Nafizul Haque Kazi, Jan André Hane, Siska Führer, Karel Bezstarosti, Rachel O’Dea, Jeroen Demmers, Malte Gersch","doi":"10.1038/s41589-024-01777-0","DOIUrl":null,"url":null,"abstract":"<p>Ubiquitin-specific proteases (USPs) represent the largest class of human deubiquitinases (DUBs) and comprise its phylogenetically most distant members USP53 and USP54, which are annotated as catalytically inactive pseudoenzymes. Conspicuously, mutations within the USP domain of <i>USP53</i> cause progressive familial intrahepatic cholestasis. Here, we report the discovery that USP53 and USP54 are active DUBs with high specificity for K63-linked polyubiquitin. We demonstrate how <i>USP53</i> mutations abrogate catalytic activity, implicating loss of DUB activity in <i>USP53</i>-mediated pathology. Depletion of <i>USP53</i> increases K63-linked ubiquitination of tricellular junction components. Assays with substrate-bound polyubiquitin reveal that USP54 cleaves within K63-linked chains, whereas USP53 can en bloc deubiquitinate substrate proteins in a K63-linkage-dependent manner. Biochemical and structural analyses uncover underlying K63-specific S2 ubiquitin-binding sites within their catalytic domains. Collectively, our work revises the annotation of USP53 and USP54, provides reagents and a mechanistic framework to investigate K63-linked polyubiquitin decoding and establishes K63-linkage-directed deubiquitination as a new DUB activity.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":"19 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41589-024-01777-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ubiquitin-specific proteases (USPs) represent the largest class of human deubiquitinases (DUBs) and comprise its phylogenetically most distant members USP53 and USP54, which are annotated as catalytically inactive pseudoenzymes. Conspicuously, mutations within the USP domain of USP53 cause progressive familial intrahepatic cholestasis. Here, we report the discovery that USP53 and USP54 are active DUBs with high specificity for K63-linked polyubiquitin. We demonstrate how USP53 mutations abrogate catalytic activity, implicating loss of DUB activity in USP53-mediated pathology. Depletion of USP53 increases K63-linked ubiquitination of tricellular junction components. Assays with substrate-bound polyubiquitin reveal that USP54 cleaves within K63-linked chains, whereas USP53 can en bloc deubiquitinate substrate proteins in a K63-linkage-dependent manner. Biochemical and structural analyses uncover underlying K63-specific S2 ubiquitin-binding sites within their catalytic domains. Collectively, our work revises the annotation of USP53 and USP54, provides reagents and a mechanistic framework to investigate K63-linked polyubiquitin decoding and establishes K63-linkage-directed deubiquitination as a new DUB activity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
USP53 中 K63 链接定向去泛素酶活性的发现及其机制
泛素特异性蛋白酶(USPs)是人类去泛素酶(DUBs)中最大的一类,由其系统发育关系最远的成员 USP53 和 USP54 组成,它们被注释为无催化活性的假酶。值得注意的是,USP53 的 USP 结构域突变会导致进行性家族性肝内胆汁淤积症。在这里,我们报告发现 USP53 和 USP54 是活性 DUB,对 K63 链接的多泛素具有高度特异性。我们展示了 USP53 基因突变如何削弱催化活性,从而说明 DUB 活性的丧失与 USP53 介导的病理学有关。USP53 的缺失会增加三细胞连接成分的 K63 链接泛素化。用底物结合的多泛素进行的分析表明,USP54 在 K63 连接链内进行裂解,而 USP53 能以 K63 连接依赖性的方式对底物蛋白质进行整体去泛素化。生化和结构分析发现了其催化结构域中潜在的 K63 特异性 S2 泛素结合位点。总之,我们的工作修订了 USP53 和 USP54 的注释,提供了研究 K63 链接多泛素解码的试剂和机制框架,并将 K63 链接指导的去泛素化确立为一种新的 DUB 活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature chemical biology
Nature chemical biology 生物-生化与分子生物学
CiteScore
23.90
自引率
1.40%
发文量
238
审稿时长
12 months
期刊介绍: Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision. The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms. Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.
期刊最新文献
Mitochondria-localized MBD2c facilitates mtDNA transcription and drug resistance How nature ties peptide knots Discovery and mechanism of K63-linkage-directed deubiquitinase activity in USP53 A key to sperm–egg union Guiding the pioneer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1