Oluwamayokun Oshinowo, Renee Copeland, Anamika Patel, Nina Shaver, Meredith E. Fay, Rebecca Jeltuhin, Yijin Xiang, Christina Caruso, Adiya E. Otumala, Sarah Hernandez, Priscilla Delgado, Gabrielle Dean, James M. Kelvin, Daniel Chester, Ashley C. Brown, Erik C. Dreaden, Traci Leong, Jesse Waggoner, Renhao Li, Eric Ortlund, Carolyn Bennett, Wilbur A. Lam, David R. Myers
{"title":"Autoantibodies immuno-mechanically modulate platelet contractile force and bleeding risk","authors":"Oluwamayokun Oshinowo, Renee Copeland, Anamika Patel, Nina Shaver, Meredith E. Fay, Rebecca Jeltuhin, Yijin Xiang, Christina Caruso, Adiya E. Otumala, Sarah Hernandez, Priscilla Delgado, Gabrielle Dean, James M. Kelvin, Daniel Chester, Ashley C. Brown, Erik C. Dreaden, Traci Leong, Jesse Waggoner, Renhao Li, Eric Ortlund, Carolyn Bennett, Wilbur A. Lam, David R. Myers","doi":"10.1038/s41467-024-54309-8","DOIUrl":null,"url":null,"abstract":"<p>Altered mechanotransduction has been proposed as a putative mechanism for disease pathophysiology, yet evidence remains scarce. Here we introduce a concept we call single cell immuno-mechanical modulation, which links immunology, integrin biology, cellular mechanics, and disease pathophysiology and symptomology. Using a micropatterned hydrogel-laden coverslip compatible with standard fluorescence microscopy, we conduct a clinical mechanobiology study, specifically focusing on immune thrombocytopenia (ITP), an autoantibody-mediated platelet disorder that currently lacks a reliable biomarker for bleeding risk. We discover that in pediatric ITP patients (<i>n</i> = 53), low single platelet contraction force alone is a “physics-based” biomarker of bleeding (92.3% sensitivity, 90% specificity). Mechanistically, autoantibodies and monoclonal antibodies drive increases and decreases of cell force by stabilizing integrins in different conformations depending on the targeted epitope. Hence, immuno-mechanical modulation demonstrates how antibodies may pathologically alter mechanotransduction to cause clinical symptoms and this phenomenon can be leveraged to control cellular mechanics for research, diagnostic, and therapeutic purposes.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54309-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Altered mechanotransduction has been proposed as a putative mechanism for disease pathophysiology, yet evidence remains scarce. Here we introduce a concept we call single cell immuno-mechanical modulation, which links immunology, integrin biology, cellular mechanics, and disease pathophysiology and symptomology. Using a micropatterned hydrogel-laden coverslip compatible with standard fluorescence microscopy, we conduct a clinical mechanobiology study, specifically focusing on immune thrombocytopenia (ITP), an autoantibody-mediated platelet disorder that currently lacks a reliable biomarker for bleeding risk. We discover that in pediatric ITP patients (n = 53), low single platelet contraction force alone is a “physics-based” biomarker of bleeding (92.3% sensitivity, 90% specificity). Mechanistically, autoantibodies and monoclonal antibodies drive increases and decreases of cell force by stabilizing integrins in different conformations depending on the targeted epitope. Hence, immuno-mechanical modulation demonstrates how antibodies may pathologically alter mechanotransduction to cause clinical symptoms and this phenomenon can be leveraged to control cellular mechanics for research, diagnostic, and therapeutic purposes.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.