{"title":"Quantum-inspired attribute selection algorithms","authors":"Diksha Sharma, Parvinder Singh and Atul Kumar","doi":"10.1088/2058-9565/ad934d","DOIUrl":null,"url":null,"abstract":"In this study, we propose the use of quantum information gain (QIG) and fidelity as quantum splitting criteria to construct an efficient and balanced quantum decision tree. QIG is a circuit-based criterion in which angle embedding is used to construct a quantum state, which utilizes quantum mutual information to compute the information between a feature and the class attribute. For the fidelity-based criterion, we construct a quantum state using the occurrence of random events in a feature and its corresponding class. We use the constructed state to further compute fidelity for determining the splitting attribute among all features. Using numerical analysis, our results clearly demonstrate that the fidelity-based criterion ensures the construction of a balanced tree. We further compare the efficiency of our quantum information gain and fidelity-based quantum splitting criteria with different classical splitting criteria on balanced and imbalanced datasets. Our analysis shows that the quantum splitting criteria lead to quantum advantage in comparison to classical splitting criteria for different evaluation metrics.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"183 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ad934d","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we propose the use of quantum information gain (QIG) and fidelity as quantum splitting criteria to construct an efficient and balanced quantum decision tree. QIG is a circuit-based criterion in which angle embedding is used to construct a quantum state, which utilizes quantum mutual information to compute the information between a feature and the class attribute. For the fidelity-based criterion, we construct a quantum state using the occurrence of random events in a feature and its corresponding class. We use the constructed state to further compute fidelity for determining the splitting attribute among all features. Using numerical analysis, our results clearly demonstrate that the fidelity-based criterion ensures the construction of a balanced tree. We further compare the efficiency of our quantum information gain and fidelity-based quantum splitting criteria with different classical splitting criteria on balanced and imbalanced datasets. Our analysis shows that the quantum splitting criteria lead to quantum advantage in comparison to classical splitting criteria for different evaluation metrics.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.