{"title":"Distributionally robust insurance under the Wasserstein distance","authors":"Tim J. Boonen , Wenjun Jiang","doi":"10.1016/j.insmatheco.2024.11.003","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies the optimal insurance contracting from the perspective of a decision maker (DM) who has an ambiguous understanding of the loss distribution. The ambiguity set of loss distributions is represented as a <em>p</em>-Wasserstein ball, with <span><math><mi>p</mi><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>, centered around a specific benchmark distribution. The DM selects the indemnity function that minimizes the worst-case risk within the risk-minimization framework, considering the constraints of the Wasserstein ball. Assuming that the DM is endowed with a convex distortion risk measure and that insurance pricing follows the expected-value premium principle, we derive the explicit structures of both the indemnity function and the worst-case distribution using a novel survival-function-based representation of the Wasserstein distance. We examine a specific example where the DM employs the GlueVaR and provide numerical results to demonstrate the sensitivity of the worst-case distribution concerning the model parameters.</div></div>","PeriodicalId":54974,"journal":{"name":"Insurance Mathematics & Economics","volume":"120 ","pages":"Pages 61-78"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insurance Mathematics & Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167668724001082","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper studies the optimal insurance contracting from the perspective of a decision maker (DM) who has an ambiguous understanding of the loss distribution. The ambiguity set of loss distributions is represented as a p-Wasserstein ball, with , centered around a specific benchmark distribution. The DM selects the indemnity function that minimizes the worst-case risk within the risk-minimization framework, considering the constraints of the Wasserstein ball. Assuming that the DM is endowed with a convex distortion risk measure and that insurance pricing follows the expected-value premium principle, we derive the explicit structures of both the indemnity function and the worst-case distribution using a novel survival-function-based representation of the Wasserstein distance. We examine a specific example where the DM employs the GlueVaR and provide numerical results to demonstrate the sensitivity of the worst-case distribution concerning the model parameters.
期刊介绍:
Insurance: Mathematics and Economics publishes leading research spanning all fields of actuarial science research. It appears six times per year and is the largest journal in actuarial science research around the world.
Insurance: Mathematics and Economics is an international academic journal that aims to strengthen the communication between individuals and groups who develop and apply research results in actuarial science. The journal feels a particular obligation to facilitate closer cooperation between those who conduct research in insurance mathematics and quantitative insurance economics, and practicing actuaries who are interested in the implementation of the results. To this purpose, Insurance: Mathematics and Economics publishes high-quality articles of broad international interest, concerned with either the theory of insurance mathematics and quantitative insurance economics or the inventive application of it, including empirical or experimental results. Articles that combine several of these aspects are particularly considered.