Monitoring northern Greenland proglacial river discharge from space

IF 11.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Remote Sensing of Environment Pub Date : 2024-11-26 DOI:10.1016/j.rse.2024.114529
Dinghua Chen , Kang Yang , Mengtian Man , Chang Huang , Yuhan Wang , Xiaodong Yi , Yuxin Zhu
{"title":"Monitoring northern Greenland proglacial river discharge from space","authors":"Dinghua Chen ,&nbsp;Kang Yang ,&nbsp;Mengtian Man ,&nbsp;Chang Huang ,&nbsp;Yuhan Wang ,&nbsp;Xiaodong Yi ,&nbsp;Yuxin Zhu","doi":"10.1016/j.rse.2024.114529","DOIUrl":null,"url":null,"abstract":"<div><div>Large volumes of meltwater produced on the northern Greenland Ice Sheet (GrIS) are directly routed into proglacial rivers, forming continuous supraglacial-proglacial catchments. Thereby, estimating proglacial river discharge is crucial for better understanding of northern Greenland hydrology and mass balance. We propose a method for estimating proglacial river discharge solely from space by combining Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2), ArcticDEM, and Harmonized Landsat and Sentinel-2 (HLS) data. Firstly, we use the modified normalized difference water index to extract proglacial river water masks from 30 m HLS imagery time series and calculate river effective width (<em>W</em><sub><em>e</em></sub>). Secondly, we derive near-dry riverbed cross-sectional curves from ICESat-2 ATL06 data. Thirdly, we intersect proglacial river water masks with riverbed cross-sectional curves to calculate the mean depth, wetted perimeter, cross-sectional area, and hydraulic radius, and combine ArcticDEM to estimate the channel bed slope. Finally, with these hydraulic geometry estimates, we calculate proglacial discharge and analyze its uncertainty via error propagation. We apply this method to estimate the proglacial discharge (<em>Q</em><sub><em>s</em></sub>) of the Denmark catchment (area ∼ 3254 km<sup>2</sup>) in northern Greenland during the 2020–2021 melt seasons and compare <em>Q</em><sub><em>s</em></sub> with the surface meltwater runoff (<em>Q</em><sub><em>m</em></sub>) simulated by two regional climate models (RCMs, including MARv3.12 and RACMO2.3p2), and validate the accuracy and spatial transferability of the method with in-situ proglacial discharge (<em>Q</em><sub><em>in-situ</em></sub>) of the Watson River in southwestern Greenland. The results show that: (1) the satellite-estimated <em>W</em><sub><em>e</em></sub> and <em>Q</em><sub><em>s</em></sub> exhibit significant seasonal variations, with the average <em>W</em><sub><em>e</em></sub> of 579 ± 371 m for 2020, 505 ± 394 m for 2021, and a maximum of 2040 m, and <em>Q</em><sub><em>s</em></sub> has the average value of 207.6 ± 134.1 m<sup>3</sup>/s for 2020, 210.4 ± 243.2 m<sup>3</sup>/s for 2021, and a maximum of 1509.4 ± 190.3 m<sup>3</sup>/s; (2) the satellite-estimated <em>Q</em><sub><em>s</em></sub> is positively correlated with the RCM-simulated <em>Q</em><sub><em>m</em></sub> (<em>R</em><sup><em>2</em></sup> = 0.82 and 0.69 for MAR and RACMO, respectively), indicating that RCMs can reflect the overall seasonal variations of proglacial discharge reasonably well; (3) the RCM-simulated <em>Q</em><sub><em>m</em></sub> is considerably higher than our satellite-estimated <em>Q</em><sub><em>s</em></sub>, with the <em>bias</em>, <em>RMSE</em>, and <em>RRMSE</em> for MAR (RACMO) being 116.6 ± 5.9 m<sup>3</sup>/s (130.3 ± 5.9 m<sup>3</sup>/s), 174.7 ± 6.7 m<sup>3</sup>/s (208.9 ± 6.1 m<sup>3</sup>/s), and 83 ± 4 % (100 ± 4 %), respectively, and (4) our satellite-based method can be successfully applied to the Watson River in southwestern Greenland and the resultant <em>Q</em><sub><em>s</em></sub> matches well with <em>Q</em><sub><em>in-situ</em></sub> (<em>RRMSE</em> = 27 %). In conclusion, multi-temporal and multi-source satellite observations facilitate the estimation of proglacial river discharge and provide an approach to directly estimate GrIS ice surface meltwater runoff.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"317 ","pages":"Article 114529"},"PeriodicalIF":11.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425724005558","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Large volumes of meltwater produced on the northern Greenland Ice Sheet (GrIS) are directly routed into proglacial rivers, forming continuous supraglacial-proglacial catchments. Thereby, estimating proglacial river discharge is crucial for better understanding of northern Greenland hydrology and mass balance. We propose a method for estimating proglacial river discharge solely from space by combining Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2), ArcticDEM, and Harmonized Landsat and Sentinel-2 (HLS) data. Firstly, we use the modified normalized difference water index to extract proglacial river water masks from 30 m HLS imagery time series and calculate river effective width (We). Secondly, we derive near-dry riverbed cross-sectional curves from ICESat-2 ATL06 data. Thirdly, we intersect proglacial river water masks with riverbed cross-sectional curves to calculate the mean depth, wetted perimeter, cross-sectional area, and hydraulic radius, and combine ArcticDEM to estimate the channel bed slope. Finally, with these hydraulic geometry estimates, we calculate proglacial discharge and analyze its uncertainty via error propagation. We apply this method to estimate the proglacial discharge (Qs) of the Denmark catchment (area ∼ 3254 km2) in northern Greenland during the 2020–2021 melt seasons and compare Qs with the surface meltwater runoff (Qm) simulated by two regional climate models (RCMs, including MARv3.12 and RACMO2.3p2), and validate the accuracy and spatial transferability of the method with in-situ proglacial discharge (Qin-situ) of the Watson River in southwestern Greenland. The results show that: (1) the satellite-estimated We and Qs exhibit significant seasonal variations, with the average We of 579 ± 371 m for 2020, 505 ± 394 m for 2021, and a maximum of 2040 m, and Qs has the average value of 207.6 ± 134.1 m3/s for 2020, 210.4 ± 243.2 m3/s for 2021, and a maximum of 1509.4 ± 190.3 m3/s; (2) the satellite-estimated Qs is positively correlated with the RCM-simulated Qm (R2 = 0.82 and 0.69 for MAR and RACMO, respectively), indicating that RCMs can reflect the overall seasonal variations of proglacial discharge reasonably well; (3) the RCM-simulated Qm is considerably higher than our satellite-estimated Qs, with the bias, RMSE, and RRMSE for MAR (RACMO) being 116.6 ± 5.9 m3/s (130.3 ± 5.9 m3/s), 174.7 ± 6.7 m3/s (208.9 ± 6.1 m3/s), and 83 ± 4 % (100 ± 4 %), respectively, and (4) our satellite-based method can be successfully applied to the Watson River in southwestern Greenland and the resultant Qs matches well with Qin-situ (RRMSE = 27 %). In conclusion, multi-temporal and multi-source satellite observations facilitate the estimation of proglacial river discharge and provide an approach to directly estimate GrIS ice surface meltwater runoff.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从太空监测格陵兰岛北部冰川河流的排水量
格陵兰冰原北部产生的大量融水直接流入冰川河流,形成连续的超冰川-冰川集水区。因此,估算冰川河流的排水量对于更好地了解格陵兰岛北部的水文和质量平衡至关重要。我们结合冰、云和陆地高程卫星-2(ICESat-2)、ArcticDEM 以及大地遥感卫星和哨兵卫星-2(HLS)的数据,提出了一种仅从太空估算冰川河流排放量的方法。首先,我们使用修正的归一化差异水指数,从 30 米 HLS 图像时间序列中提取冰川河流水掩模,并计算河流有效宽度(We)。其次,我们从 ICESat-2 ATL06 数据中推导出近干河床断面曲线。第三,我们将冰川河水掩模与河床横截面曲线相交,计算出平均深度、润湿周长、横截面积和水力半径,并结合 ArcticDEM 估算出河床坡度。最后,根据这些水力几何估算值,我们计算出冰川期的排水量,并通过误差传播分析其不确定性。我们应用该方法估算了格陵兰岛北部丹麦集水区(面积 ∼ 3254 平方公里)在 2020-2021 年融水季节的冰川径流量(Qs),并将 Qs 与两个区域气候模式(RCM,包括 MARv3.12 和 RACMO2.3p2)模拟的地表融水径流量(Qm)进行了比较,同时用格陵兰岛西南部沃森河的原位冰川径流量(Qin-situ)验证了该方法的准确性和空间可转移性。结果表明(1) 卫星估算的 We 和 Qs 有明显的季节性变化,2020 年的平均 We 为 579 ± 371 m,2021 年为 505 ± 394 m,最大值为 2040 m,Qs 的平均值为 207.6 ± 134.1 m3/s,2021 年为 210.4 ± 243.2 m3/s,最大值为 1509.4 ± 190.3 m3/s;(2)卫星估算的 Qs 与 RCM 模拟的 Qm 呈正相关(MAR 和 RACMO 的 R2 = 0.82 和 0.69),表明 RCM 能较好地反映冰期排泄量的总体季节变化;(3)RCM 模拟的 Qm 远高于卫星估算的 Qs,MAR(RACMO)的偏差、均方根误差和均方根均方根误差分别为 116.6±5.9立方米/秒(130.3±5.9立方米/秒)、174.7±6.7立方米/秒(208.9±6.1立方米/秒)和83±4%(100±4%);(4) 我们基于卫星的方法可成功应用于格陵兰西南部的沃森河,得出的 Qs 与原位 Qs 非常吻合(RRMSE = 27%)。总之,多时多源卫星观测有助于估算冰川河流的排水量,并为直接估算格陵兰岛冰面融水径流提供了一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
期刊最新文献
Optimising sub-metre resolution 3D geomorphic change detection over large areas using multitemporal airborne laser scanning with Sentinel-1 InSAR and Sentinel-2 optical observations Monitoring northern Greenland proglacial river discharge from space Comparing methods for solar-induced fluorescence efficiency estimation using radiative transfer modelling and airborne diurnal measurements of barley crops Comprehensive LiDAR simulation with efficient physically-based DART-Lux model (II): Validation with GEDI and ICESat-2 measurements at natural and urban landscapes A physics-based atmospheric precipitable water vapor retrieval algorithm by synchronizing MODIS near-infrared and thermal infrared measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1