Halochromic aerogels with Ca2⁺-induced tailored porosity based on alginate/gellan integrated with Echium amoenum anthocyanins: Characterization and application for freshness monitoring of rainbow trout fillet
{"title":"Halochromic aerogels with Ca2⁺-induced tailored porosity based on alginate/gellan integrated with Echium amoenum anthocyanins: Characterization and application for freshness monitoring of rainbow trout fillet","authors":"Samira Forghani, Hadi Almasi","doi":"10.1016/j.foodhyd.2024.110826","DOIUrl":null,"url":null,"abstract":"<div><div>This study aimed to fabricate a food freshness halochromic aerogel based on alginate, gellan, and <em>Echium amoenum</em> anthocyanins (EA). The porosity and morphological properties of the aerogels (AG2, AG6, and AG10) were regulated by varying the concentration of CaCl<sub>2</sub> (2, 6, 10 %). FE-SEM analysis revealed that increasing the CaCl<sub>2</sub> content led to the formation of aerogels with enhanced overall porosity and larger pore sizes. The AG6 aerogel, characterized by a density of 23.44 ± 0.04 mg/cm³, a porosity of 91.66 ± 0.06%, and an average pore size of 306.93 ± 122.89 μm, was identified as the optimal support for the incorporation of the EA pigment. FT-IR analysis verified the formation of hydrogen bonds between the AG6 aerogel and EA molecules. Incorporating anthocyanin increased the crystallinity and thermal stability of the aerogel, as evidenced by XRD and DSC analyses. The AG6EA aerogel displayed a color shift from red to yellow over a pH range of 2–12. The AG6EA aerogel demonstrated high sensitivity to ammonia vapor and proper color stability and reversibility. The AG6EA aerogel color transitioned from purple to blue and then green through rainbow trout storage, correlating with changes in pH, total volatile basic nitrogen (TVB-N), and total viable microbial count (TVC and TPC) of the fish samples. This research extends a new insight to develop cutting-edge, susceptible, and accurate pH indicators capable of quality assessment of protein-based food products.</div></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"160 ","pages":"Article 110826"},"PeriodicalIF":11.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268005X24011007","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to fabricate a food freshness halochromic aerogel based on alginate, gellan, and Echium amoenum anthocyanins (EA). The porosity and morphological properties of the aerogels (AG2, AG6, and AG10) were regulated by varying the concentration of CaCl2 (2, 6, 10 %). FE-SEM analysis revealed that increasing the CaCl2 content led to the formation of aerogels with enhanced overall porosity and larger pore sizes. The AG6 aerogel, characterized by a density of 23.44 ± 0.04 mg/cm³, a porosity of 91.66 ± 0.06%, and an average pore size of 306.93 ± 122.89 μm, was identified as the optimal support for the incorporation of the EA pigment. FT-IR analysis verified the formation of hydrogen bonds between the AG6 aerogel and EA molecules. Incorporating anthocyanin increased the crystallinity and thermal stability of the aerogel, as evidenced by XRD and DSC analyses. The AG6EA aerogel displayed a color shift from red to yellow over a pH range of 2–12. The AG6EA aerogel demonstrated high sensitivity to ammonia vapor and proper color stability and reversibility. The AG6EA aerogel color transitioned from purple to blue and then green through rainbow trout storage, correlating with changes in pH, total volatile basic nitrogen (TVB-N), and total viable microbial count (TVC and TPC) of the fish samples. This research extends a new insight to develop cutting-edge, susceptible, and accurate pH indicators capable of quality assessment of protein-based food products.
期刊介绍:
Food Hydrocolloids publishes original and innovative research focused on the characterization, functional properties, and applications of hydrocolloid materials used in food products. These hydrocolloids, defined as polysaccharides and proteins of commercial importance, are added to control aspects such as texture, stability, rheology, and sensory properties. The research's primary emphasis should be on the hydrocolloids themselves, with thorough descriptions of their source, nature, and physicochemical characteristics. Manuscripts are expected to clearly outline specific aims and objectives, include a fundamental discussion of research findings at the molecular level, and address the significance of the results. Studies on hydrocolloids in complex formulations should concentrate on their overall properties and mechanisms of action, while simple formulation development studies may not be considered for publication.
The main areas of interest are:
-Chemical and physicochemical characterisation
Thermal properties including glass transitions and conformational changes-
Rheological properties including viscosity, viscoelastic properties and gelation behaviour-
The influence on organoleptic properties-
Interfacial properties including stabilisation of dispersions, emulsions and foams-
Film forming properties with application to edible films and active packaging-
Encapsulation and controlled release of active compounds-
The influence on health including their role as dietary fibre-
Manipulation of hydrocolloid structure and functionality through chemical, biochemical and physical processes-
New hydrocolloids and hydrocolloid sources of commercial potential.
The Journal also publishes Review articles that provide an overview of the latest developments in topics of specific interest to researchers in this field of activity.