Unveiling the mechanism of high-molecular-weight glutenin subunit deletions at the Glu-B1 locus affecting gluten deterioration during dough frozen storage and freeze-thaw cycles: An integrative experimental and in silico study
Tao Yang , Tian Lv , Bo Wang , Pei Wang , Qin Zhou , Dong Jiang , Hao Jiang
{"title":"Unveiling the mechanism of high-molecular-weight glutenin subunit deletions at the Glu-B1 locus affecting gluten deterioration during dough frozen storage and freeze-thaw cycles: An integrative experimental and in silico study","authors":"Tao Yang , Tian Lv , Bo Wang , Pei Wang , Qin Zhou , Dong Jiang , Hao Jiang","doi":"10.1016/j.foodhyd.2024.110804","DOIUrl":null,"url":null,"abstract":"<div><div>This study explored how high-molecular-weight glutenin subunits (HMW-GS) at the Glu-B1 locus impact gluten deterioration during dough frozen storage and freeze-thaw (F/T) cycles. Using deletion lines, we found that the deletion of specific HMW-GS, particularly <em>Bx7</em>, led to a greater reduction in glutenin macropolymer (GMP) wet weight during storage, especially under F/T cycles. The frozen conditions triggered more dissociation of hydrogen and disulfide bonds, generating more protein monomers and resulting in severe gluten deterioration in the <em>Bx7</em> deletion. Additionally, protein structures in these lines were more vulnerable to damage during F/T cycles due to temperature fluctuations. In silico analysis further confirmed that <em>Bx7</em> had better stability and antifreeze activity compared to <em>By8</em>, explaining why its deletion had a more pronounced effect on gluten stability. These findings offer significant implications for the food industry, particularly in enhancing the quality, shelf-life, and commercial viability of frozen dough products by providing a deeper understanding of the mechanisms behind gluten deterioration, specifically the role of high-molecular-weight glutenin subunits.</div></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"160 ","pages":"Article 110804"},"PeriodicalIF":11.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268005X24010786","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study explored how high-molecular-weight glutenin subunits (HMW-GS) at the Glu-B1 locus impact gluten deterioration during dough frozen storage and freeze-thaw (F/T) cycles. Using deletion lines, we found that the deletion of specific HMW-GS, particularly Bx7, led to a greater reduction in glutenin macropolymer (GMP) wet weight during storage, especially under F/T cycles. The frozen conditions triggered more dissociation of hydrogen and disulfide bonds, generating more protein monomers and resulting in severe gluten deterioration in the Bx7 deletion. Additionally, protein structures in these lines were more vulnerable to damage during F/T cycles due to temperature fluctuations. In silico analysis further confirmed that Bx7 had better stability and antifreeze activity compared to By8, explaining why its deletion had a more pronounced effect on gluten stability. These findings offer significant implications for the food industry, particularly in enhancing the quality, shelf-life, and commercial viability of frozen dough products by providing a deeper understanding of the mechanisms behind gluten deterioration, specifically the role of high-molecular-weight glutenin subunits.
期刊介绍:
Food Hydrocolloids publishes original and innovative research focused on the characterization, functional properties, and applications of hydrocolloid materials used in food products. These hydrocolloids, defined as polysaccharides and proteins of commercial importance, are added to control aspects such as texture, stability, rheology, and sensory properties. The research's primary emphasis should be on the hydrocolloids themselves, with thorough descriptions of their source, nature, and physicochemical characteristics. Manuscripts are expected to clearly outline specific aims and objectives, include a fundamental discussion of research findings at the molecular level, and address the significance of the results. Studies on hydrocolloids in complex formulations should concentrate on their overall properties and mechanisms of action, while simple formulation development studies may not be considered for publication.
The main areas of interest are:
-Chemical and physicochemical characterisation
Thermal properties including glass transitions and conformational changes-
Rheological properties including viscosity, viscoelastic properties and gelation behaviour-
The influence on organoleptic properties-
Interfacial properties including stabilisation of dispersions, emulsions and foams-
Film forming properties with application to edible films and active packaging-
Encapsulation and controlled release of active compounds-
The influence on health including their role as dietary fibre-
Manipulation of hydrocolloid structure and functionality through chemical, biochemical and physical processes-
New hydrocolloids and hydrocolloid sources of commercial potential.
The Journal also publishes Review articles that provide an overview of the latest developments in topics of specific interest to researchers in this field of activity.