1D-2D Z-scheme junction by coupling CaTiO3 rectangular nanorods with CdS nanosheets enhances photocatalytic hydrogen evolution

IF 3.9 2区 化学 Q2 CHEMISTRY, PHYSICAL Molecular Catalysis Pub Date : 2024-11-21 DOI:10.1016/j.mcat.2024.114701
Wuxia Zhang , Jinyan Xiong , Shaozhong Li , Wei Li
{"title":"1D-2D Z-scheme junction by coupling CaTiO3 rectangular nanorods with CdS nanosheets enhances photocatalytic hydrogen evolution","authors":"Wuxia Zhang ,&nbsp;Jinyan Xiong ,&nbsp;Shaozhong Li ,&nbsp;Wei Li","doi":"10.1016/j.mcat.2024.114701","DOIUrl":null,"url":null,"abstract":"<div><div>Designing and developing Z-scheme photocatalytic system for highly efficient hydrogen production through water splitting is a prospective strategy to alleviate energy and environmental issues. Herein, CaTiO<sub>3</sub>/CdS nanocomposites have been synthesized by a simple solvothermal method, in which CaTiO<sub>3</sub> and CdS present rectangular nanorods and nanosheet-like morphologies, respectively. The optimized 60%-CaTiO<sub>3</sub>/CdS composite exhibits a remarkable photocatalytic performance with H<sub>2</sub> evolution rate of ∼12,381.80 μmol·g<sup>-1</sup>·h<sup>-1</sup>, and it is 1.9 and 124 times higher than that of single CdS and CaTiO<sub>3</sub>, respectively. Photoluminescence (PL), photocurrent, and electrochemical impedance measurements confirm boosted interfacial charge separation within CaTiO<sub>3</sub>/CdS photocatalyst. Notably, as verified by the band structures, XPS analysis and fluorescence probe experiments, the intimate Z-scheme heterojunction interface constructed between two components plays a critical role in promoting the separation of photogenerated e<sup>-</sup>/<em>h</em><sup>+</sup> pairs and retaining superior redox capabilities, thus leading to enhanced H<sub>2</sub> evolution performance. Moreover, this synthetic method could be applied to other MTiO<sub>3</sub> (<em>M</em> = Sr and Ni) type semiconductors in accelerating the photocatalytic H<sub>2</sub> production. It is anticipated this work could offer a reference for rationally designing and constructing perovskite-based composite catalysts with improved solar-to-hydrogen conversion.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"570 ","pages":"Article 114701"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823124008836","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Designing and developing Z-scheme photocatalytic system for highly efficient hydrogen production through water splitting is a prospective strategy to alleviate energy and environmental issues. Herein, CaTiO3/CdS nanocomposites have been synthesized by a simple solvothermal method, in which CaTiO3 and CdS present rectangular nanorods and nanosheet-like morphologies, respectively. The optimized 60%-CaTiO3/CdS composite exhibits a remarkable photocatalytic performance with H2 evolution rate of ∼12,381.80 μmol·g-1·h-1, and it is 1.9 and 124 times higher than that of single CdS and CaTiO3, respectively. Photoluminescence (PL), photocurrent, and electrochemical impedance measurements confirm boosted interfacial charge separation within CaTiO3/CdS photocatalyst. Notably, as verified by the band structures, XPS analysis and fluorescence probe experiments, the intimate Z-scheme heterojunction interface constructed between two components plays a critical role in promoting the separation of photogenerated e-/h+ pairs and retaining superior redox capabilities, thus leading to enhanced H2 evolution performance. Moreover, this synthetic method could be applied to other MTiO3 (M = Sr and Ni) type semiconductors in accelerating the photocatalytic H2 production. It is anticipated this work could offer a reference for rationally designing and constructing perovskite-based composite catalysts with improved solar-to-hydrogen conversion.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过耦合 CaTiO3 矩形纳米棒和 CdS 纳米片实现的 1D-2D Z 型结可增强光催化氢气进化能力
设计和开发 Z 型光催化系统,通过分水实现高效制氢,是缓解能源和环境问题的一项前瞻性战略。本文采用简单的溶热法合成了 CaTiO3/CdS 纳米复合材料,其中 CaTiO3 和 CdS 分别呈现矩形纳米棒和纳米片状形态。优化后的 60%-CaTiO3/CdS 复合材料具有显著的光催化性能,其 H2 演化率为 ∼12,381.80 μmol-g-1-h-1,分别是单一 CdS 和 CaTiO3 的 1.9 倍和 124 倍。光致发光(PL)、光电流和电化学阻抗测量证实,CaTiO3/CdS 光催化剂内部的界面电荷分离得到了加强。值得注意的是,正如能带结构、XPS 分析和荧光探针实验所验证的那样,两种成分之间构建的亲密 Z 型异质结界面在促进光生 e-/h+ 对的分离和保持优异的氧化还原能力方面发挥了关键作用,从而提高了 H2 的演化性能。此外,这种合成方法还可应用于其他 MTiO3(M = Sr 和 Ni)型半导体,以加速光催化产生 H2。预计这项工作将为合理设计和构建具有更高的太阳能-氢气转化率的基于包晶石的复合催化剂提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Catalysis
Molecular Catalysis Chemical Engineering-Process Chemistry and Technology
CiteScore
6.90
自引率
10.90%
发文量
700
审稿时长
40 days
期刊介绍: Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are: Heterogeneous catalysis including immobilized molecular catalysts Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis Photo- and electrochemistry Theoretical aspects of catalysis analyzed by computational methods
期刊最新文献
Editorial Board Contents continued Graphical abstract TOC Graphical abstract TOC Enzymatic and convenient synthesis of polyhydroxyalkyl pyrroles from unprotected sugars, benzoylacetonitriles, and NH4OAc/Benzylamines in water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1