Daniele Ussorio , Marzia Sara Vaccaro , Raffaele Barretta , Raimondo Luciano , Francesco Marotti de Sciarra
{"title":"Large deflection of a nonlocal gradient cantilever beam","authors":"Daniele Ussorio , Marzia Sara Vaccaro , Raffaele Barretta , Raimondo Luciano , Francesco Marotti de Sciarra","doi":"10.1016/j.ijengsci.2024.104172","DOIUrl":null,"url":null,"abstract":"<div><div>Analysing scale phenomena in nanostructures is crucial for modelling and optimizing modern nanotechnological devices. Notably, soft nanostructures can be effectively designed as basic components of smart electro-mechanical systems that require geometrically nonlinear analyses as their structural parts undergo large deflection. Adoption of non-conventional approaches for accurate assessment of size effects is thus needed. The paper investigates the elastostatic behaviour of small-scale beams experiencing large displacements exploiting a consistent model of integral gradient elasticity. An iterative analytical solution procedure is proposed to address the geometrically nonlinear problem of soft nanobeams. The presented nonlocal stress gradient methodology is able to capture both stiffening and softening size-dependent nonlinear responses, thus generalizing the outcomes contributed by <span><span>Vaccaro (2022)</span></span>. Effectiveness of the proposed approach for modelling and designing next-generation smart devices is finally shown by solving applicative nanomechanical problems. The presented methodology can be further extended to nonlinear analyses of three-dimensional nanocontinua to capture size effects of arbitrarily shaped structures undergoing large configuration changes.</div></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"206 ","pages":"Article 104172"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722524001563","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Analysing scale phenomena in nanostructures is crucial for modelling and optimizing modern nanotechnological devices. Notably, soft nanostructures can be effectively designed as basic components of smart electro-mechanical systems that require geometrically nonlinear analyses as their structural parts undergo large deflection. Adoption of non-conventional approaches for accurate assessment of size effects is thus needed. The paper investigates the elastostatic behaviour of small-scale beams experiencing large displacements exploiting a consistent model of integral gradient elasticity. An iterative analytical solution procedure is proposed to address the geometrically nonlinear problem of soft nanobeams. The presented nonlocal stress gradient methodology is able to capture both stiffening and softening size-dependent nonlinear responses, thus generalizing the outcomes contributed by Vaccaro (2022). Effectiveness of the proposed approach for modelling and designing next-generation smart devices is finally shown by solving applicative nanomechanical problems. The presented methodology can be further extended to nonlinear analyses of three-dimensional nanocontinua to capture size effects of arbitrarily shaped structures undergoing large configuration changes.
期刊介绍:
The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome.
The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process.
Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.