Hengyuan Liu , Zheng Li , Baolong Han , Xiang Chen , Doyle Paul , Yong Liu
{"title":"Integrating neural mutation into mutation-based fault localization: A hybrid approach","authors":"Hengyuan Liu , Zheng Li , Baolong Han , Xiang Chen , Doyle Paul , Yong Liu","doi":"10.1016/j.jss.2024.112281","DOIUrl":null,"url":null,"abstract":"<div><div>Fault localization is an important part of software testing and debugging, helping improve the process of fixing faults. Mutation-Based Fault Localization (MBFL) is widely used, but the reliance of Traditional-MBFL on syntactical mutants often limits its accuracy. To address this, we propose Neural-MBFL, which introduces neural mutation to generate semantically richer mutants using deep learning to better mimic real faults. Additionally, we present NeuraIntegra-MBFL, which combines neural and traditional mutation strategies through mutant combination and suspiciousness aggregation. Experiments on 835 faulty programs from the Defects4J benchmark show that Neural-MBFL improves fault localization compared to Traditional-MBFL, with a 35.50% relative improvement in <em>MAP</em> and 127 more faults localized at <em>TOP-5</em>, while maintaining acceptable computational cost. Compared to Neural-MBFL, NeuraIntegra-MBFL further enhances performance, particularly with suspiciousness aggregation, achieving an additional 11.96% <em>MAP</em> improvement and localizes 45 more faults at <em>TOP-5</em>, demonstrating the effectiveness of integrating suspiciousness scores. Using overlap and correlation analyses, we confirmed the complementarity between Neural-MBFL and Traditional-MBFL. Neural-MBFL is more effective at localizing faults that require understanding deep code semantics, while Traditional-MBFL performs better at handling rule-based modifications. NeuraIntegra-MBFL successfully integrates the strengths of both methods, offering better performance than either approach alone.</div></div>","PeriodicalId":51099,"journal":{"name":"Journal of Systems and Software","volume":"221 ","pages":"Article 112281"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems and Software","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016412122400325X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Fault localization is an important part of software testing and debugging, helping improve the process of fixing faults. Mutation-Based Fault Localization (MBFL) is widely used, but the reliance of Traditional-MBFL on syntactical mutants often limits its accuracy. To address this, we propose Neural-MBFL, which introduces neural mutation to generate semantically richer mutants using deep learning to better mimic real faults. Additionally, we present NeuraIntegra-MBFL, which combines neural and traditional mutation strategies through mutant combination and suspiciousness aggregation. Experiments on 835 faulty programs from the Defects4J benchmark show that Neural-MBFL improves fault localization compared to Traditional-MBFL, with a 35.50% relative improvement in MAP and 127 more faults localized at TOP-5, while maintaining acceptable computational cost. Compared to Neural-MBFL, NeuraIntegra-MBFL further enhances performance, particularly with suspiciousness aggregation, achieving an additional 11.96% MAP improvement and localizes 45 more faults at TOP-5, demonstrating the effectiveness of integrating suspiciousness scores. Using overlap and correlation analyses, we confirmed the complementarity between Neural-MBFL and Traditional-MBFL. Neural-MBFL is more effective at localizing faults that require understanding deep code semantics, while Traditional-MBFL performs better at handling rule-based modifications. NeuraIntegra-MBFL successfully integrates the strengths of both methods, offering better performance than either approach alone.
期刊介绍:
The Journal of Systems and Software publishes papers covering all aspects of software engineering and related hardware-software-systems issues. All articles should include a validation of the idea presented, e.g. through case studies, experiments, or systematic comparisons with other approaches already in practice. Topics of interest include, but are not limited to:
•Methods and tools for, and empirical studies on, software requirements, design, architecture, verification and validation, maintenance and evolution
•Agile, model-driven, service-oriented, open source and global software development
•Approaches for mobile, multiprocessing, real-time, distributed, cloud-based, dependable and virtualized systems
•Human factors and management concerns of software development
•Data management and big data issues of software systems
•Metrics and evaluation, data mining of software development resources
•Business and economic aspects of software development processes
The journal welcomes state-of-the-art surveys and reports of practical experience for all of these topics.