Synthesis of (bicyclo[2.2.0]hex-1-yl)methanal and Arrhenius parameters for thermal rearrangement: Radical stabilizing effect of aldehyde substituents on highly strained CC bonds
Anita Nowienski , Murray G. Rosenberg , Udo H. Brinker
{"title":"Synthesis of (bicyclo[2.2.0]hex-1-yl)methanal and Arrhenius parameters for thermal rearrangement: Radical stabilizing effect of aldehyde substituents on highly strained CC bonds","authors":"Anita Nowienski , Murray G. Rosenberg , Udo H. Brinker","doi":"10.1016/j.tetlet.2024.155369","DOIUrl":null,"url":null,"abstract":"<div><div>Bicyclo[2.2.0]hexane rearranges to hexa-1,5-diene via the cyclohexane-1,4-diyl diradical. The 1-formyl substituted derivative was sought to evaluate the effect of a CHO-group on the rate of rearrangement. (Bicyclo[2.2.0]hex-1-yl)methanal was prepared for the first time in a multistep synthesis starting from hexachlorocyclopentadiene. The pivotal last step was achieved by Swern oxidation of (bicyclo[2.2.0]hex-1-yl)methanol at <em>T</em> = –60 °C. The carbon skeleton of the alcohol precursor remains intact under those conditions. Thermolysis of the aldehyde to 2-methylenehex-5-enal follows a first-order rate law between <em>T</em> = 322.85–361.51 K (<em>T</em><sub>avg</sub> = 343.30 K). Seven rate constants <em>k<sub>T</sub></em> were used to plot log <em>k<sub>T</sub></em> vs. 1/<em>T</em>, which provided the Arrhenius parameters for the rearrangement: activation energy (<em>E</em><sub>a</sub>) = 25.4 ± 1.0 kcal/mol and pre-exponential factor (<em>A</em><sub>343</sub>) = 1.66 × 10<sup>12</sup> s<sup>−1</sup>. The <em>E</em><sub>a</sub> is 10.6 kcal/mol below that of the unsubstituted archetype bicyclo[2.2.0]hexane. This sizable change in <em>E</em><sub>a</sub> reflects the radical stabilization energy of the CHO-group in 1-formylcyclohexane-1,4-diyl.</div></div>","PeriodicalId":438,"journal":{"name":"Tetrahedron Letters","volume":"153 ","pages":"Article 155369"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tetrahedron Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040403924004647","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Bicyclo[2.2.0]hexane rearranges to hexa-1,5-diene via the cyclohexane-1,4-diyl diradical. The 1-formyl substituted derivative was sought to evaluate the effect of a CHO-group on the rate of rearrangement. (Bicyclo[2.2.0]hex-1-yl)methanal was prepared for the first time in a multistep synthesis starting from hexachlorocyclopentadiene. The pivotal last step was achieved by Swern oxidation of (bicyclo[2.2.0]hex-1-yl)methanol at T = –60 °C. The carbon skeleton of the alcohol precursor remains intact under those conditions. Thermolysis of the aldehyde to 2-methylenehex-5-enal follows a first-order rate law between T = 322.85–361.51 K (Tavg = 343.30 K). Seven rate constants kT were used to plot log kT vs. 1/T, which provided the Arrhenius parameters for the rearrangement: activation energy (Ea) = 25.4 ± 1.0 kcal/mol and pre-exponential factor (A343) = 1.66 × 1012 s−1. The Ea is 10.6 kcal/mol below that of the unsubstituted archetype bicyclo[2.2.0]hexane. This sizable change in Ea reflects the radical stabilization energy of the CHO-group in 1-formylcyclohexane-1,4-diyl.
期刊介绍:
Tetrahedron Letters provides maximum dissemination of outstanding developments in organic chemistry. The journal is published weekly and covers developments in techniques, structures, methods and conclusions in experimental and theoretical organic chemistry. Rapid publication of timely and significant research results enables researchers from all over the world to transmit quickly their new contributions to large, international audiences.