Donghai Wang , Shun Liu , Jing Zou , Wenjun Qiao , Sun Jin
{"title":"Flexible robotic cell scheduling with graph neural network based deep reinforcement learning","authors":"Donghai Wang , Shun Liu , Jing Zou , Wenjun Qiao , Sun Jin","doi":"10.1016/j.jmsy.2024.11.010","DOIUrl":null,"url":null,"abstract":"<div><div>Flexible robotic cells are pivotal in flexible and customized manufacturing. An effective scheduling policy for such cells can significantly reduce the makespan and improve the production efficiency. This study introduces an innovative end-to-end real-time scheduling method leveraging deep reinforcement learning (DRL) to minimize the makespan in a flexible robotic cell. We introduce a heterogeneous disjunctive graph model for a nuanced representation of the scheduling problem, which incorporates transportation through specific disjunctive arcs. The DRL utilizes Graph Neural Network (GNN) for model feature extraction and employs Proximal Policy Optimization (PPO) to train the scheduling agent. Our methodology can also better leverage the transport robot capacity to mitigate system blockage and deadlock. Numerical experiments are conducted to demonstrate the effectiveness of the proposed method.</div></div>","PeriodicalId":16227,"journal":{"name":"Journal of Manufacturing Systems","volume":"78 ","pages":"Pages 81-93"},"PeriodicalIF":12.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278612524002632","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Flexible robotic cells are pivotal in flexible and customized manufacturing. An effective scheduling policy for such cells can significantly reduce the makespan and improve the production efficiency. This study introduces an innovative end-to-end real-time scheduling method leveraging deep reinforcement learning (DRL) to minimize the makespan in a flexible robotic cell. We introduce a heterogeneous disjunctive graph model for a nuanced representation of the scheduling problem, which incorporates transportation through specific disjunctive arcs. The DRL utilizes Graph Neural Network (GNN) for model feature extraction and employs Proximal Policy Optimization (PPO) to train the scheduling agent. Our methodology can also better leverage the transport robot capacity to mitigate system blockage and deadlock. Numerical experiments are conducted to demonstrate the effectiveness of the proposed method.
期刊介绍:
The Journal of Manufacturing Systems is dedicated to showcasing cutting-edge fundamental and applied research in manufacturing at the systems level. Encompassing products, equipment, people, information, control, and support functions, manufacturing systems play a pivotal role in the economical and competitive development, production, delivery, and total lifecycle of products, meeting market and societal needs.
With a commitment to publishing archival scholarly literature, the journal strives to advance the state of the art in manufacturing systems and foster innovation in crafting efficient, robust, and sustainable manufacturing systems. The focus extends from equipment-level considerations to the broader scope of the extended enterprise. The Journal welcomes research addressing challenges across various scales, including nano, micro, and macro-scale manufacturing, and spanning diverse sectors such as aerospace, automotive, energy, and medical device manufacturing.