Xavier Morató , Raquel Puerta , Amanda Cano , Adelina Orellana , Itziar de Rojas , María Capdevila , Laura Montrreal , Maitée Rosende-Roca , Pablo García-González , Claudia Olivé , Fernando García-Gutiérrez , Josep Blázquez , Andrea Miguel , Raúl Núñez-Llaves , Vanesa Pytel , Montserrat Alegret , María Victoria Fernández , Marta Marquié , Sergi Valero , Jose Enrique Cavazos , Agustín Ruiz
{"title":"Associations of plasma SMOC1 and soluble IL6RA levels with the progression from mild cognitive impairment to dementia","authors":"Xavier Morató , Raquel Puerta , Amanda Cano , Adelina Orellana , Itziar de Rojas , María Capdevila , Laura Montrreal , Maitée Rosende-Roca , Pablo García-González , Claudia Olivé , Fernando García-Gutiérrez , Josep Blázquez , Andrea Miguel , Raúl Núñez-Llaves , Vanesa Pytel , Montserrat Alegret , María Victoria Fernández , Marta Marquié , Sergi Valero , Jose Enrique Cavazos , Agustín Ruiz","doi":"10.1016/j.bbih.2024.100899","DOIUrl":null,"url":null,"abstract":"<div><div>Despite the central role attributed to neuroinflammation in the etiology and pathobiology of Alzheimer's disease (AD), the direct link between levels of inflammatory mediators in blood and cerebrospinal fluid (CSF) compartments, as well as their potential implications for AD diagnosis and progression, remains inconclusive. Moreover, there is debate on whether inflammation has a protective or detrimental effect on disease onset and progression. Indeed, distinct immunological mechanisms may govern protective and damaging effects at early and late stages, respectively.</div><div>This study aims to (i) identify inflammatory mediators demonstrating robust correlations between peripheral and central nervous system (CNS) compartments by means of plasma and CSF analysis, respectively, and (ii) assess their potential significance in the context of AD and disease progression from mild cognitive impairment (MCI) to dementia. To achieve this, we have examined the inflammatory profile of a well-defined subcohort comprising 485 individuals from the Ace Alzheimer Center Barcelona (ACE). Employing a hierarchical clustering approach, we thoroughly evaluated the intercompartmental correlations of 63 distinct inflammation mediators, quantified in paired CSF and plasma samples, using advanced SOMAscan technology. Of the array of mediators investigated, only six mediators (CRP, IL1RAP, ILRL1, IL6RA, PDGFRB, and YKL-40) exhibited robust correlations between the central and peripheral compartments (proximity scores <400). To strengthen the validity of our findings, these identified mediators were subsequently validated in a second subcohort of individuals from ACE (n = 873). The observed plasma correlations across the entire cohort consistently have a Spearman rho value above 0.51 (n = 1,360, p < 1.77E-93).</div><div>Of the high CSF-plasma correlated proteins, only soluble IL6RA (sIL6RA) displayed a statistically significant association with the conversion from MCI to dementia. This association remained robust even after applying a stringent Bonferroni correction (Cox proportional hazard ratio [HR] = 1.936 per standard deviation; p = 0.0018). This association retained its significance when accounting for various factors, including CSF amyloid (Aβ42) and Thr181-phosphorylated tau (p-tau) levels, age, sex, baseline Mini-Mental State Examination (MMSE) score, and potential sampling biases identified through principal component analysis (PCA) modeling. Furthermore, our study confirmed the association of both plasma and CSF levels of SPARC-related modular calcium-binding protein 1 (SMOC1) with amyloid and tau accumulation, indicating their role as early surrogate biomarkers for AD pathology. Despite the lack of a statistically significant correlation between SMOC1 levels in CSF and plasma, both acted as independent biomarkers of disease progression (HR > 1.3, p < 0.002).</div><div>In conclusion, our study unveils that sIL6RA and SMOC1 are associated with MCI progression. The absence of correlations among inflammatory mediators between the central and peripheral compartments appears to be a common pattern, with only a few intriguing exceptions.</div></div>","PeriodicalId":72454,"journal":{"name":"Brain, behavior, & immunity - health","volume":"42 ","pages":"Article 100899"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain, behavior, & immunity - health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666354624001777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the central role attributed to neuroinflammation in the etiology and pathobiology of Alzheimer's disease (AD), the direct link between levels of inflammatory mediators in blood and cerebrospinal fluid (CSF) compartments, as well as their potential implications for AD diagnosis and progression, remains inconclusive. Moreover, there is debate on whether inflammation has a protective or detrimental effect on disease onset and progression. Indeed, distinct immunological mechanisms may govern protective and damaging effects at early and late stages, respectively.
This study aims to (i) identify inflammatory mediators demonstrating robust correlations between peripheral and central nervous system (CNS) compartments by means of plasma and CSF analysis, respectively, and (ii) assess their potential significance in the context of AD and disease progression from mild cognitive impairment (MCI) to dementia. To achieve this, we have examined the inflammatory profile of a well-defined subcohort comprising 485 individuals from the Ace Alzheimer Center Barcelona (ACE). Employing a hierarchical clustering approach, we thoroughly evaluated the intercompartmental correlations of 63 distinct inflammation mediators, quantified in paired CSF and plasma samples, using advanced SOMAscan technology. Of the array of mediators investigated, only six mediators (CRP, IL1RAP, ILRL1, IL6RA, PDGFRB, and YKL-40) exhibited robust correlations between the central and peripheral compartments (proximity scores <400). To strengthen the validity of our findings, these identified mediators were subsequently validated in a second subcohort of individuals from ACE (n = 873). The observed plasma correlations across the entire cohort consistently have a Spearman rho value above 0.51 (n = 1,360, p < 1.77E-93).
Of the high CSF-plasma correlated proteins, only soluble IL6RA (sIL6RA) displayed a statistically significant association with the conversion from MCI to dementia. This association remained robust even after applying a stringent Bonferroni correction (Cox proportional hazard ratio [HR] = 1.936 per standard deviation; p = 0.0018). This association retained its significance when accounting for various factors, including CSF amyloid (Aβ42) and Thr181-phosphorylated tau (p-tau) levels, age, sex, baseline Mini-Mental State Examination (MMSE) score, and potential sampling biases identified through principal component analysis (PCA) modeling. Furthermore, our study confirmed the association of both plasma and CSF levels of SPARC-related modular calcium-binding protein 1 (SMOC1) with amyloid and tau accumulation, indicating their role as early surrogate biomarkers for AD pathology. Despite the lack of a statistically significant correlation between SMOC1 levels in CSF and plasma, both acted as independent biomarkers of disease progression (HR > 1.3, p < 0.002).
In conclusion, our study unveils that sIL6RA and SMOC1 are associated with MCI progression. The absence of correlations among inflammatory mediators between the central and peripheral compartments appears to be a common pattern, with only a few intriguing exceptions.