Circuit integration by transplanted human neurons

IF 3.7 2区 生物学 Q2 CELL BIOLOGY Current Opinion in Genetics & Development Pub Date : 2024-11-23 DOI:10.1016/j.gde.2024.102225
Qiang Yuan , Su-Chun Zhang
{"title":"Circuit integration by transplanted human neurons","authors":"Qiang Yuan ,&nbsp;Su-Chun Zhang","doi":"10.1016/j.gde.2024.102225","DOIUrl":null,"url":null,"abstract":"<div><div>Transplantation-based cell therapy holds the potential to offer sustained and physiological repair for neurological diseases and injuries, which requires the integration of transplanted neurons into the neural circuits of the human brain. Recent studies involving transplantation of human pluripotent stem cell–derived neural progenitors into the brain of model animals reveal the remarkable capacity of grafted immature human neurons to mature, project axons in a long distance, and form both pre- and postsynaptic connections with host neurons, corresponding to functional recovery. Strikingly, this circuit integration depends largely on the identity of the transplanted cells and may be modified by external stimuli. This realization begs for enriched authentic target cells for transplantation and combination with rehabilitation for better therapeutic outcomes.</div></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":"89 ","pages":"Article 102225"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Genetics & Development","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959437X24000741","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Transplantation-based cell therapy holds the potential to offer sustained and physiological repair for neurological diseases and injuries, which requires the integration of transplanted neurons into the neural circuits of the human brain. Recent studies involving transplantation of human pluripotent stem cell–derived neural progenitors into the brain of model animals reveal the remarkable capacity of grafted immature human neurons to mature, project axons in a long distance, and form both pre- and postsynaptic connections with host neurons, corresponding to functional recovery. Strikingly, this circuit integration depends largely on the identity of the transplanted cells and may be modified by external stimuli. This realization begs for enriched authentic target cells for transplantation and combination with rehabilitation for better therapeutic outcomes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
移植人体神经元的电路整合
基于移植的细胞疗法有可能为神经系统疾病和损伤提供持续的生理修复,这需要将移植的神经元整合到人脑的神经回路中。最近的研究将人多能干细胞衍生的神经祖细胞移植到模式动物的大脑中,结果表明,移植的未成熟人类神经元具有显著的成熟能力,能长距离投射轴突,并与宿主神经元形成突触前和突触后连接,从而实现功能恢复。令人震惊的是,这种回路整合在很大程度上取决于移植细胞的特性,并可能因外部刺激而改变。这就要求为移植和康复结合提供富集的真实靶细胞,以取得更好的治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
102
审稿时长
1 months
期刊介绍: Current Opinion in Genetics and Development aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed. In Current Opinion in Genetics and Development we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.[...] The subject of Genetics and Development is divided into six themed sections, each of which is reviewed once a year: • Cancer Genomics • Genome Architecture and Expression • Molecular and genetic basis of disease • Developmental mechanisms, patterning and evolution • Cell reprogramming, regeneration and repair • Genetics of Human Origin / Evolutionary genetics (alternate years)
期刊最新文献
In vitro dynamics of DNA loop extrusion by structural maintenance of chromosomes complexes Novelty versus innovation of gene regulatory elements in human evolution and disease Editorial Board Circuit integration by transplanted human neurons Control of cell fate upon transcription factor–driven cardiac reprogramming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1