Bifunctional heterostructure ZnWO4@ZnO nanocomposite for high-performance electrocatalysis and supercapacitor applications

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science and Engineering B-advanced Functional Solid-state Materials Pub Date : 2024-11-26 DOI:10.1016/j.mseb.2024.117848
V. Balasubramanian , B. Shunmugapriya , R. Suman , T. Daniel , Ashraf M.M. Abdelbacki , Shaban R.M. Syed , Ranjith Balu
{"title":"Bifunctional heterostructure ZnWO4@ZnO nanocomposite for high-performance electrocatalysis and supercapacitor applications","authors":"V. Balasubramanian ,&nbsp;B. Shunmugapriya ,&nbsp;R. Suman ,&nbsp;T. Daniel ,&nbsp;Ashraf M.M. Abdelbacki ,&nbsp;Shaban R.M. Syed ,&nbsp;Ranjith Balu","doi":"10.1016/j.mseb.2024.117848","DOIUrl":null,"url":null,"abstract":"<div><div>Earth-abundant transition metal oxides (TMOs) represent a versatile class of electrode materials that excel in energy and environmental applications. Strategically incorporating additional metal oxides to form heterostructures significantly enhances electrical conductivity and cyclic stability, paving the way for better performance in energy storage and conversion technologies. In this study, we developed a ZnWO<sub>4</sub>@ZnO nanocomposite heterostructure using a straightforward solid-state synthesis method, positioning it as a bifunctional electroactive material for supercapacitor and catalytic applications. Importantly, the heterostructure’s increased surface area allows for more active sites for electrochemical reactions, which can boost current generation. The synergistic interaction between ZnO and ZnWO<sub>4</sub> significantly enhances the electrochemical properties of the heterostructure, resulting in an impressive specific capacitance of 363 Fg<sup>−1</sup> and exceptional cyclic stability over 10,000 charge–discharge cycles. These results underscore the potential of this material in energy storage and conversion technologies, making it a compelling candidate for high-performance supercapacitor and catalytic applications.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering B-advanced Functional Solid-state Materials","volume":"312 ","pages":"Article 117848"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering B-advanced Functional Solid-state Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510724006779","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Earth-abundant transition metal oxides (TMOs) represent a versatile class of electrode materials that excel in energy and environmental applications. Strategically incorporating additional metal oxides to form heterostructures significantly enhances electrical conductivity and cyclic stability, paving the way for better performance in energy storage and conversion technologies. In this study, we developed a ZnWO4@ZnO nanocomposite heterostructure using a straightforward solid-state synthesis method, positioning it as a bifunctional electroactive material for supercapacitor and catalytic applications. Importantly, the heterostructure’s increased surface area allows for more active sites for electrochemical reactions, which can boost current generation. The synergistic interaction between ZnO and ZnWO4 significantly enhances the electrochemical properties of the heterostructure, resulting in an impressive specific capacitance of 363 Fg−1 and exceptional cyclic stability over 10,000 charge–discharge cycles. These results underscore the potential of this material in energy storage and conversion technologies, making it a compelling candidate for high-performance supercapacitor and catalytic applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高性能电催化和超级电容器应用的双功能异质结构 ZnWO4@ZnO 纳米复合材料
富含地球的过渡金属氧化物(TMOs)是一类用途广泛的电极材料,在能源和环境应用中表现出色。有策略地加入额外的金属氧化物以形成异质结构,可显著增强导电性和循环稳定性,从而为提高能源存储和转换技术的性能铺平道路。在本研究中,我们采用一种简单的固态合成方法开发出了 ZnWO4@ZnO 纳米复合异质结构,并将其定位为超级电容器和催化应用的双功能电活性材料。重要的是,异质结构表面积的增加为电化学反应提供了更多的活性位点,从而提高了电流的产生。ZnO 和 ZnWO4 之间的协同作用显著增强了异质结构的电化学特性,使其比电容达到了惊人的 363 Fg-1,并在 10,000 次充放电循环中保持了卓越的循环稳定性。这些结果凸显了这种材料在能量存储和转换技术方面的潜力,使其成为高性能超级电容器和催化应用的理想候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
期刊最新文献
Improved magnetic and thermal conductivity performance of FeSi soft magnetic composites by adding h-BN Structural, morphological, and electric study of doped- Na2Zn2TeO6 family in a wide range of temperatures Performance enhancement of intermediate-temperature SOFCs using Ba0.5Sr0.5Sc0.2-xTaxCo0.8O3-δ-Based composite cathodes 2D materials integrated with polymers for sustainable energy harvesting through triboelectric nanogenerators Bifunctional heterostructure ZnWO4@ZnO nanocomposite for high-performance electrocatalysis and supercapacitor applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1