Sonochemical synthesis of CoO-ZnO nanocomposite and optimizing the degradation of toxic anionic dye using RSM-BBD

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science and Engineering: B Pub Date : 2024-11-22 DOI:10.1016/j.mseb.2024.117847
Muhammad Afaq , Arfaa Sajid , Qaisar Manzoor , Faiza Imtiaz , Anam Sajid , Rida Javed , Awais Ahmad , Norah Alwadai , Wissem Mnif , Munawar Iqbal
{"title":"Sonochemical synthesis of CoO-ZnO nanocomposite and optimizing the degradation of toxic anionic dye using RSM-BBD","authors":"Muhammad Afaq ,&nbsp;Arfaa Sajid ,&nbsp;Qaisar Manzoor ,&nbsp;Faiza Imtiaz ,&nbsp;Anam Sajid ,&nbsp;Rida Javed ,&nbsp;Awais Ahmad ,&nbsp;Norah Alwadai ,&nbsp;Wissem Mnif ,&nbsp;Munawar Iqbal","doi":"10.1016/j.mseb.2024.117847","DOIUrl":null,"url":null,"abstract":"<div><div>A sonochemical co-precipitation method was employed to synthesize the CoO-ZnO nanocomposite for the degradation of methyl red (MR) anionic dye. The nanocomposite was characterized using UV–Vis spectrophotometer, FTIR, XRD, SEM-EDX, TGA and Zeta potential. The SEM images showed the agglomeration of spherical grains due to the difference in the magnetic nature of the sample. The zeta potential values exhibited that the colloidal suspension was present all over the surface. Response Surface Methodology (RSM) was utilized to optimize the degradation of MR dye, and achieved 89 % removal efficiency with a 30 mg dose of the catalyst over 120 minutes. The degradation mechanism relies on the photocatalytic activity of the synthesized CoO-ZnO nanocomposite, which generates reactive oxygen species to break down MR dye. The high degradation efficiency, achieved via RSM optimization, underscores the nanocomposite’s potential for environmental remediation. This makes it a promising solution for removing MR dye and other anionic dyes from polluted water.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"312 ","pages":"Article 117847"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510724006767","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A sonochemical co-precipitation method was employed to synthesize the CoO-ZnO nanocomposite for the degradation of methyl red (MR) anionic dye. The nanocomposite was characterized using UV–Vis spectrophotometer, FTIR, XRD, SEM-EDX, TGA and Zeta potential. The SEM images showed the agglomeration of spherical grains due to the difference in the magnetic nature of the sample. The zeta potential values exhibited that the colloidal suspension was present all over the surface. Response Surface Methodology (RSM) was utilized to optimize the degradation of MR dye, and achieved 89 % removal efficiency with a 30 mg dose of the catalyst over 120 minutes. The degradation mechanism relies on the photocatalytic activity of the synthesized CoO-ZnO nanocomposite, which generates reactive oxygen species to break down MR dye. The high degradation efficiency, achieved via RSM optimization, underscores the nanocomposite’s potential for environmental remediation. This makes it a promising solution for removing MR dye and other anionic dyes from polluted water.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
声化学合成 CoO-ZnO 纳米复合材料并利用 RSM-BBD 优化有毒阴离子染料的降解过程
采用声化学共沉淀法合成了用于降解甲基红(MR)阴离子染料的 CoO-ZnO 纳米复合材料。使用紫外可见分光光度计、傅立叶变换红外光谱、XRD、SEM-EDX、TGA 和 Zeta 电位对纳米复合材料进行了表征。扫描电镜图像显示,由于样品的磁性不同,球形颗粒聚集在一起。Zeta 电位值显示胶体悬浮液遍布整个表面。利用响应面方法学(RSM)对 MR 染料的降解进行了优化,在 120 分钟内使用 30 毫克剂量的催化剂,降解效率达到 89%。降解机理依赖于合成的 CoO-ZnO 纳米复合材料的光催化活性,它能产生活性氧来分解 MR 染料。通过 RSM 优化实现的高降解效率凸显了该纳米复合材料在环境修复方面的潜力。这使其成为去除受污染水体中 MR 染料和其他阴离子染料的理想解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Science and Engineering: B
Materials Science and Engineering: B 工程技术-材料科学:综合
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
期刊最新文献
Technical analysis of a combined heating and power system based on solid oxide fuel cell for building application Probing the opto-electronic, thermoelectric, thermodynamic and elastic responses of lead-free double perovskite Li2ATlCl6 (A = Na and K) for potential photovoltaic and high- energy applications: A DFT study Development of highly thermal-stable blue emitting Y4Al2O9:Bi3+ phosphors for w-LEDs, fingerprint and data security applications A non-enzymatic electrochemical sensor based on zinc oxide/reduced graphene oxide (ZnO/rGO) nanocomposite for effective detection of urea Numerical design and optimization of Sb2S3/SnS2 heterojunction solar cells: Performance analysis and insights
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1