Annalisa Polo , Chiara Nomellini , Gianluigi Marra , Elena Selli , Maria Vittoria Dozzi
{"title":"WO3/BiVO4 heterojunction photoanodes: Optimized photoelectrochemical performance in relation to both oxides layer thickness","authors":"Annalisa Polo , Chiara Nomellini , Gianluigi Marra , Elena Selli , Maria Vittoria Dozzi","doi":"10.1016/j.cattod.2024.115137","DOIUrl":null,"url":null,"abstract":"<div><div>An effective strategy to boost the photoelectrochemical (PEC) performance of photoactive materials consists in combining different semiconductors with complementary characteristics, to build type-II heterojunctions. In particular, WO<sub>3</sub>/BiVO<sub>4</sub> photoanodes exhibit synergistic effects in the photo-oxidation of water into molecular oxygen, usually overwhelming possible recombination paths at work within the heterojunction. We present here a systematic PEC investigation on composite WO<sub>3</sub>/BiVO<sub>4</sub> photoanodes with various WO<sub>3</sub> and BiVO<sub>4</sub> layer thickness (200–800 nm and 40–140 nm, respectively), in comparison with equally thick single WO<sub>3</sub> and BiVO<sub>4</sub> photoanodes, performed under either solar or monochromatic irradiation. We demonstrate that detrimental charge recombination is mainly active under back-side irradiation and is mitigated by minimizing the absorption of both tungsten trioxide and bismuth vanadate layers. Higher photocurrent values are in general attained when the photoanodes are irradiated through the electrolyte/electrode interface, with the best performing photoanodes being composed of <em>ca.</em> 500 nm- and 140 nm-thick WO<sub>3</sub> and BiVO<sub>4</sub> layers, respectively.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"446 ","pages":"Article 115137"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Today","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092058612400631X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
An effective strategy to boost the photoelectrochemical (PEC) performance of photoactive materials consists in combining different semiconductors with complementary characteristics, to build type-II heterojunctions. In particular, WO3/BiVO4 photoanodes exhibit synergistic effects in the photo-oxidation of water into molecular oxygen, usually overwhelming possible recombination paths at work within the heterojunction. We present here a systematic PEC investigation on composite WO3/BiVO4 photoanodes with various WO3 and BiVO4 layer thickness (200–800 nm and 40–140 nm, respectively), in comparison with equally thick single WO3 and BiVO4 photoanodes, performed under either solar or monochromatic irradiation. We demonstrate that detrimental charge recombination is mainly active under back-side irradiation and is mitigated by minimizing the absorption of both tungsten trioxide and bismuth vanadate layers. Higher photocurrent values are in general attained when the photoanodes are irradiated through the electrolyte/electrode interface, with the best performing photoanodes being composed of ca. 500 nm- and 140 nm-thick WO3 and BiVO4 layers, respectively.
期刊介绍:
Catalysis Today focuses on the rapid publication of original invited papers devoted to currently important topics in catalysis and related subjects. The journal only publishes special issues (Proposing a Catalysis Today Special Issue), each of which is supervised by Guest Editors who recruit individual papers and oversee the peer review process. Catalysis Today offers researchers in the field of catalysis in-depth overviews of topical issues.
Both fundamental and applied aspects of catalysis are covered. Subjects such as catalysis of immobilized organometallic and biocatalytic systems are welcome. Subjects related to catalysis such as experimental techniques, adsorption, process technology, synthesis, in situ characterization, computational, theoretical modeling, imaging and others are included if there is a clear relationship to catalysis.