Heng Yu, Jingwen Wang, Zhoumei Xu, Bin Zou, Fukai Chu, Lei Song, Weizhao Hu, Yuan Hu
{"title":"Experimental and numerical investigation on pyrolysis and combustion behavior of biomass bast fibers: Hemp, flax and ramie fibers","authors":"Heng Yu, Jingwen Wang, Zhoumei Xu, Bin Zou, Fukai Chu, Lei Song, Weizhao Hu, Yuan Hu","doi":"10.1016/j.jaap.2024.106875","DOIUrl":null,"url":null,"abstract":"<div><div>As an important renewable biomass material, bast fiber of crops has various application values. However, its flammable and decomposable characteristics bring challenges to its storage and practical applications. In this work, a steady-state tube furnace (SSTF) was built independently. And the pyrolysis and combustion behavior of three typical bast fibers: hemp, flax, and ramie were systematically studied. Among them, the total heat release of hemp and ramie was about 49.4 % higher than that of flax. And the average CO content of flax and ramie were 35.2 % and 39.5 % lower than hemp, respectively. Data-based fire hazard assessment illustrated that the hemp had the highest fire hazard. A Genetic Algorithm (GA)-based four-step reaction model was proposed and accurately predicted the pyrolysis process of bast fibers (<em>F</em><sub><em>dev</em></sub>≤0.016). Furthermore, the pyrolysis products of bast fibers were studied based on TG-FTIR and PY-GC-MS. On this basis, the possible production mechanism of pyrolysis products was proposed. This work will provide a reference for research on pyrolysis and combustion of biomass.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"185 ","pages":"Article 106875"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical and Applied Pyrolysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165237024005308","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
As an important renewable biomass material, bast fiber of crops has various application values. However, its flammable and decomposable characteristics bring challenges to its storage and practical applications. In this work, a steady-state tube furnace (SSTF) was built independently. And the pyrolysis and combustion behavior of three typical bast fibers: hemp, flax, and ramie were systematically studied. Among them, the total heat release of hemp and ramie was about 49.4 % higher than that of flax. And the average CO content of flax and ramie were 35.2 % and 39.5 % lower than hemp, respectively. Data-based fire hazard assessment illustrated that the hemp had the highest fire hazard. A Genetic Algorithm (GA)-based four-step reaction model was proposed and accurately predicted the pyrolysis process of bast fibers (Fdev≤0.016). Furthermore, the pyrolysis products of bast fibers were studied based on TG-FTIR and PY-GC-MS. On this basis, the possible production mechanism of pyrolysis products was proposed. This work will provide a reference for research on pyrolysis and combustion of biomass.
期刊介绍:
The Journal of Analytical and Applied Pyrolysis (JAAP) is devoted to the publication of papers dealing with innovative applications of pyrolysis processes, the characterization of products related to pyrolysis reactions, and investigations of reaction mechanism. To be considered by JAAP, a manuscript should present significant progress in these topics. The novelty must be satisfactorily argued in the cover letter. A manuscript with a cover letter to the editor not addressing the novelty is likely to be rejected without review.