Luoqi Zhao , Xiaoni Wu , Yongjian He , Huaye Shang , Changxing Hu , Changqun Duan , Denggao Fu
{"title":"Changes in plant carbon inputs alter soil phosphorus dynamics in a coniferous forest ecosystem in subtropical mountain area","authors":"Luoqi Zhao , Xiaoni Wu , Yongjian He , Huaye Shang , Changxing Hu , Changqun Duan , Denggao Fu","doi":"10.1016/j.catena.2024.108572","DOIUrl":null,"url":null,"abstract":"<div><div>Plant carbon input aboveground and underground influences soil biological and physicochemical processes in forest ecosystems. However, compared with the well-known interactions between plant carbon and soil carbon or nitrogen, the impact on soil phosphorus (P) dynamics remains unclear. Here we investigated soil P dynamics in aggregates and bulk soil after one-year of plant carbon removal treatments (RL, removing litter; TG, tree girdling; RLTG, combination of removing litter and tree girdling; CK, control) under subtropical <em>Pinus yunnanensis</em> forest in a soil P-enriched degraded mountain area. Compared to CK, tree girdling significantly decreased the macroaggregate proportion and increased the microaggregate proportion by changing soil total carbon (TC) and Fe concentration. With the decrease of soil TC, the increase of HCl-Pi (inorganic P extracted by HCl) in microaggregate and silt and clay was significantly higher than that in macroaggregate. In addition, easily-available P and non-available P at bulk soils significantly declined and increase under RL and TG treatments, respectively. Redundancy analysis revealed that Fe, TC, and acid phosphatase activity were the main factors affecting P fractions in bulk soils. Higher δ<sup>18</sup>O<sub>P</sub> (oxygen isotope composition of phosphate) values of HCl-Pi pool and its significantly negative relationship with soil TC across the all carbon removal treatments, suggesting the weakened ability for plant to unlock soil bioavailable inorganic P combined with minerals induced by different plant carbon removal treatments. Overall, our results highlight that the importance of litter and root carbon in regulating soil P fractions and dynamics by altering the proportion of soil aggregates and the physicochemical properties of bulk soil.</div></div>","PeriodicalId":9801,"journal":{"name":"Catena","volume":"247 ","pages":"Article 108572"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catena","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0341816224007690","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Plant carbon input aboveground and underground influences soil biological and physicochemical processes in forest ecosystems. However, compared with the well-known interactions between plant carbon and soil carbon or nitrogen, the impact on soil phosphorus (P) dynamics remains unclear. Here we investigated soil P dynamics in aggregates and bulk soil after one-year of plant carbon removal treatments (RL, removing litter; TG, tree girdling; RLTG, combination of removing litter and tree girdling; CK, control) under subtropical Pinus yunnanensis forest in a soil P-enriched degraded mountain area. Compared to CK, tree girdling significantly decreased the macroaggregate proportion and increased the microaggregate proportion by changing soil total carbon (TC) and Fe concentration. With the decrease of soil TC, the increase of HCl-Pi (inorganic P extracted by HCl) in microaggregate and silt and clay was significantly higher than that in macroaggregate. In addition, easily-available P and non-available P at bulk soils significantly declined and increase under RL and TG treatments, respectively. Redundancy analysis revealed that Fe, TC, and acid phosphatase activity were the main factors affecting P fractions in bulk soils. Higher δ18OP (oxygen isotope composition of phosphate) values of HCl-Pi pool and its significantly negative relationship with soil TC across the all carbon removal treatments, suggesting the weakened ability for plant to unlock soil bioavailable inorganic P combined with minerals induced by different plant carbon removal treatments. Overall, our results highlight that the importance of litter and root carbon in regulating soil P fractions and dynamics by altering the proportion of soil aggregates and the physicochemical properties of bulk soil.
期刊介绍:
Catena publishes papers describing original field and laboratory investigations and reviews on geoecology and landscape evolution with emphasis on interdisciplinary aspects of soil science, hydrology and geomorphology. It aims to disseminate new knowledge and foster better understanding of the physical environment, of evolutionary sequences that have resulted in past and current landscapes, and of the natural processes that are likely to determine the fate of our terrestrial environment.
Papers within any one of the above topics are welcome provided they are of sufficiently wide interest and relevance.