Mengdi Xie , Haoyu Dong , Xiaolu Tang , Liwei Qian , Wenxuan Mei , Jianfang Yan , Xiaohua Fu , Yu Hu , Lei Wang
{"title":"Estuarine wetland tidal organic carbon activates microbial carbon pump and increases long-term soil carbon stability","authors":"Mengdi Xie , Haoyu Dong , Xiaolu Tang , Liwei Qian , Wenxuan Mei , Jianfang Yan , Xiaohua Fu , Yu Hu , Lei Wang","doi":"10.1016/j.catena.2024.108559","DOIUrl":null,"url":null,"abstract":"<div><div>Capture of tidal organic carbon (TOC) in estuarine systems can increase soil respiration (SR) and OC breakdown, but it is also revealed tht TOC input intensity may influence the accumulation of microbial necromass, which affects soil carbon sink of estuarine wetland. To clarify how TOC input affects the microbial carbon pump and SOC stability, we conducted a 6-year field study in low and high flats of the Yangtze River estuary and examined C cycling processes. In low tide flats, where TOC input decreased from upstream to downstream, SR decreased with the increases of SOC, whereas the microbial necromass contribution to SOC decreased from 52.16% to 41.75%, which was higher than the contribution of plant-derived refractory C. Additionally, on a mudflat, which had the highest TOC capture but lacked plant C input, microbial necromass accounted for the largest percentage of SOC (61.45%). These indicated that TOC input could increase the contribution of microbial necromass C toward SOC, in comparation with plant lignin. And the promotion of TOC input to OC stability of wetland soil would become significant with the accumulation of TOC in soil after a long period. The analysis of bacterial and fungal community structure verified this speculation that the abundance of C-associated heterotrophic bacteria and fungi increased in soil with high TOC input. These findings further supplement our previous study about the short-term inhibition effect of TOC input to SOC sequestration.</div></div>","PeriodicalId":9801,"journal":{"name":"Catena","volume":"247 ","pages":"Article 108559"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catena","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0341816224007562","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Capture of tidal organic carbon (TOC) in estuarine systems can increase soil respiration (SR) and OC breakdown, but it is also revealed tht TOC input intensity may influence the accumulation of microbial necromass, which affects soil carbon sink of estuarine wetland. To clarify how TOC input affects the microbial carbon pump and SOC stability, we conducted a 6-year field study in low and high flats of the Yangtze River estuary and examined C cycling processes. In low tide flats, where TOC input decreased from upstream to downstream, SR decreased with the increases of SOC, whereas the microbial necromass contribution to SOC decreased from 52.16% to 41.75%, which was higher than the contribution of plant-derived refractory C. Additionally, on a mudflat, which had the highest TOC capture but lacked plant C input, microbial necromass accounted for the largest percentage of SOC (61.45%). These indicated that TOC input could increase the contribution of microbial necromass C toward SOC, in comparation with plant lignin. And the promotion of TOC input to OC stability of wetland soil would become significant with the accumulation of TOC in soil after a long period. The analysis of bacterial and fungal community structure verified this speculation that the abundance of C-associated heterotrophic bacteria and fungi increased in soil with high TOC input. These findings further supplement our previous study about the short-term inhibition effect of TOC input to SOC sequestration.
期刊介绍:
Catena publishes papers describing original field and laboratory investigations and reviews on geoecology and landscape evolution with emphasis on interdisciplinary aspects of soil science, hydrology and geomorphology. It aims to disseminate new knowledge and foster better understanding of the physical environment, of evolutionary sequences that have resulted in past and current landscapes, and of the natural processes that are likely to determine the fate of our terrestrial environment.
Papers within any one of the above topics are welcome provided they are of sufficiently wide interest and relevance.