Neonatal maternal separation impairs cognitive function and synaptic plasticity in adult male CD-1 mice

IF 2 Q3 NEUROSCIENCES IBRO Neuroscience Reports Pub Date : 2024-11-09 DOI:10.1016/j.ibneur.2024.11.001
Zhen-Yu Hu , Ru-Meng Wei , Fei-Hu , Ke Yu , Shi-Kun Fang , Xue-Yan Li , Yue-Ming Zhang , Gui-Hai Chen
{"title":"Neonatal maternal separation impairs cognitive function and synaptic plasticity in adult male CD-1 mice","authors":"Zhen-Yu Hu ,&nbsp;Ru-Meng Wei ,&nbsp;Fei-Hu ,&nbsp;Ke Yu ,&nbsp;Shi-Kun Fang ,&nbsp;Xue-Yan Li ,&nbsp;Yue-Ming Zhang ,&nbsp;Gui-Hai Chen","doi":"10.1016/j.ibneur.2024.11.001","DOIUrl":null,"url":null,"abstract":"<div><div>Maternal separation (MS) increases the risk of occurrence of anxiety, depression, and learning and memory impairment in offspring. However, the underlying molecular biological mechanisms remain unclear. In the current study, offspring CD-1 mice were separated from their mothers from postnatal day 4 to postnatal day 21. At 3 months of age, the male offspring were selected for the evaluation of anxiety- and depression-like behaviors and learning and memory function. Western blotting and RT-PCR were used to examine the expression levels of brain-derived neurotrophic factor, tyrosine kinase receptor B, postsynaptic density-95, and synaptophysin. Long-term potentiation (LTP) and long-term depression (LTD) were recorded at Schaffer collateral/CA1 synapses. Furthermore, basal synaptic transmission was evaluated via the recording of the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs). The results showed that adult offspring CD-1 mice displayed anxiety- and depressive-like behaviors as well as impaired spatial learning and memory abilities. Electrophysiological analysis indicated that MS impaired LTP, enhanced LTD, and reduced the frequency of mEPSCs in pyramidal neurons in the CA1 region. Our findings suggested that MS can lead to anxiety, depression, and cognitive deficits, and these effects are associated with alterations in the levels of synaptic plasticity-associated proteins, consequently, also synaptic plasticity.</div></div>","PeriodicalId":13195,"journal":{"name":"IBRO Neuroscience Reports","volume":"17 ","pages":"Pages 431-440"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IBRO Neuroscience Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667242124000940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Maternal separation (MS) increases the risk of occurrence of anxiety, depression, and learning and memory impairment in offspring. However, the underlying molecular biological mechanisms remain unclear. In the current study, offspring CD-1 mice were separated from their mothers from postnatal day 4 to postnatal day 21. At 3 months of age, the male offspring were selected for the evaluation of anxiety- and depression-like behaviors and learning and memory function. Western blotting and RT-PCR were used to examine the expression levels of brain-derived neurotrophic factor, tyrosine kinase receptor B, postsynaptic density-95, and synaptophysin. Long-term potentiation (LTP) and long-term depression (LTD) were recorded at Schaffer collateral/CA1 synapses. Furthermore, basal synaptic transmission was evaluated via the recording of the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs). The results showed that adult offspring CD-1 mice displayed anxiety- and depressive-like behaviors as well as impaired spatial learning and memory abilities. Electrophysiological analysis indicated that MS impaired LTP, enhanced LTD, and reduced the frequency of mEPSCs in pyramidal neurons in the CA1 region. Our findings suggested that MS can lead to anxiety, depression, and cognitive deficits, and these effects are associated with alterations in the levels of synaptic plasticity-associated proteins, consequently, also synaptic plasticity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新生儿期母体分离会损害成年雄性 CD-1 小鼠的认知功能和突触可塑性
母体分离(MS)会增加后代出现焦虑、抑郁以及学习和记忆障碍的风险。然而,其潜在的分子生物学机制仍不清楚。在目前的研究中,子代 CD-1 小鼠从出生后第 4 天到出生后第 21 天与母鼠分离。在小鼠3个月大时,选择雄性后代对其焦虑和抑郁样行为以及学习和记忆功能进行评估。采用Western印迹和RT-PCR技术检测脑源性神经营养因子、酪氨酸激酶受体B、突触后密度-95和突触素的表达水平。在沙弗侧索/CA1突触处记录了长期电位(LTP)和长期抑制(LTD)。此外,还通过记录微型兴奋性突触后电流(mEPSCs)的频率和振幅评估了基础突触传递。结果显示,成年后代CD-1小鼠表现出焦虑和抑郁样行为,空间学习和记忆能力受损。电生理分析表明,MS会损害LTP,增强LTD,并降低CA1区锥体神经元的mEPSCs频率。我们的研究结果表明,多发性硬化症可导致焦虑、抑郁和认知障碍,而这些影响与突触可塑性相关蛋白水平的改变有关,因此也与突触可塑性有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IBRO Neuroscience Reports
IBRO Neuroscience Reports Neuroscience-Neuroscience (all)
CiteScore
2.80
自引率
0.00%
发文量
99
审稿时长
14 weeks
期刊介绍:
期刊最新文献
Causes and countermeasures for the increased infection and COVID-19 mortality rates in patients with schizophrenia Alterations in Neuroligin-2 and BDNF proteins associated with anxiety-like behavior in salicylate-induced tinnitus rats Understanding the influence of digital technology on human cognitive functions: A narrative review Neonatal maternal separation impairs cognitive function and synaptic plasticity in adult male CD-1 mice Exploring the potential of probiotics in Alzheimer's disease and gut dysbiosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1