{"title":"Citation counts and inclusion of references in seven free-access scholarly databases: A comparative analysis","authors":"Lorena Delgado-Quirós , José Luis Ortega","doi":"10.1016/j.joi.2024.101618","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of this study is to examine disparities in citation counts amongst scholarly databases and the reasons that contribute to these differences. A random Crossref sample of >115k DOIs was selected and subsequently searched across six databases (Dimensions, Google Scholar, Microsoft Academic, Scilit, Semantic Scholar and The Lens). In July 2021, citation counts and lists of references were extracted from each database for comparative processing and analysis. The findings indicate that publications in Crossref-based databases (Crossref, Dimensions, Scilit and The Lens) have similar citation counts, while documents in search engines (Google Scholar, Microsoft Academic and Semantic Scholar) have a higher number of citations due to a greater coverage of publications, but also to the integration of web copies. Analysis of references has revealed that Scilit only extracts references with Digital Object Identifiers (DOI) and that Semantic Scholar causes significant problems when it adds references from external web versions. Ultimately, the study has shown that all the databases struggle to index references from books and book chapters, which may be attributable to certain academic publishers. The study concludes with a discussion of the potential effects on research evaluation that may arise from this lack of citations.</div></div>","PeriodicalId":48662,"journal":{"name":"Journal of Informetrics","volume":"19 1","pages":"Article 101618"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Informetrics","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751157724001305","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this study is to examine disparities in citation counts amongst scholarly databases and the reasons that contribute to these differences. A random Crossref sample of >115k DOIs was selected and subsequently searched across six databases (Dimensions, Google Scholar, Microsoft Academic, Scilit, Semantic Scholar and The Lens). In July 2021, citation counts and lists of references were extracted from each database for comparative processing and analysis. The findings indicate that publications in Crossref-based databases (Crossref, Dimensions, Scilit and The Lens) have similar citation counts, while documents in search engines (Google Scholar, Microsoft Academic and Semantic Scholar) have a higher number of citations due to a greater coverage of publications, but also to the integration of web copies. Analysis of references has revealed that Scilit only extracts references with Digital Object Identifiers (DOI) and that Semantic Scholar causes significant problems when it adds references from external web versions. Ultimately, the study has shown that all the databases struggle to index references from books and book chapters, which may be attributable to certain academic publishers. The study concludes with a discussion of the potential effects on research evaluation that may arise from this lack of citations.
期刊介绍:
Journal of Informetrics (JOI) publishes rigorous high-quality research on quantitative aspects of information science. The main focus of the journal is on topics in bibliometrics, scientometrics, webometrics, patentometrics, altmetrics and research evaluation. Contributions studying informetric problems using methods from other quantitative fields, such as mathematics, statistics, computer science, economics and econometrics, and network science, are especially encouraged. JOI publishes both theoretical and empirical work. In general, case studies, for instance a bibliometric analysis focusing on a specific research field or a specific country, are not considered suitable for publication in JOI, unless they contain innovative methodological elements.