{"title":"Regulating the porous properties of polyaniline enhances the electron transfer process and methane production during anaerobic wastewater treatment","authors":"Jie Zhou , Eldon R. Rene , Qian Hu , Bin Qiu","doi":"10.1016/j.jwpe.2024.106570","DOIUrl":null,"url":null,"abstract":"<div><div>Conductive materials are known to enhance methane production in anaerobic treatment process by facilitating direct interspecies electron transfer (DIET). However, the role of the porous structure of conductive materials in electron transfer remains underexplored. Polyaniline (PANI) was used as conductive materials in this study due to its easily controlled porosity, investigating how surface area and pore size affect methane production. It was demonstrated that the porosity of PANI is an important factor affecting methane production by anaerobic sludge. Methane production rate of 41.2 mL/h was achieved with the high-porosity PANI, which was ~73.2% higher than the control group. The porous PANI enhanced the electric field in the anaerobic sludge, facilitating the enrichment of electrogenic bacteria and archaea. In the anaerobic system supplemented with porous PANI, the maximum accumulation of acetic acid reached 3.72 mM. The abundance of electroactive bacteria <em>Clostridium</em> involved in DIET increased by 2.13-fold, while the abundance of electroactive archaea <em>Methanosaeta</em> and <em>Methanobacterium</em>, which also participate in DIET, rose by 1.55-fold. The porous structure of PANI promotes DIET and enhances aceticlastic methanogenesis.</div></div>","PeriodicalId":17528,"journal":{"name":"Journal of water process engineering","volume":"69 ","pages":"Article 106570"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of water process engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214714424018026","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Conductive materials are known to enhance methane production in anaerobic treatment process by facilitating direct interspecies electron transfer (DIET). However, the role of the porous structure of conductive materials in electron transfer remains underexplored. Polyaniline (PANI) was used as conductive materials in this study due to its easily controlled porosity, investigating how surface area and pore size affect methane production. It was demonstrated that the porosity of PANI is an important factor affecting methane production by anaerobic sludge. Methane production rate of 41.2 mL/h was achieved with the high-porosity PANI, which was ~73.2% higher than the control group. The porous PANI enhanced the electric field in the anaerobic sludge, facilitating the enrichment of electrogenic bacteria and archaea. In the anaerobic system supplemented with porous PANI, the maximum accumulation of acetic acid reached 3.72 mM. The abundance of electroactive bacteria Clostridium involved in DIET increased by 2.13-fold, while the abundance of electroactive archaea Methanosaeta and Methanobacterium, which also participate in DIET, rose by 1.55-fold. The porous structure of PANI promotes DIET and enhances aceticlastic methanogenesis.
期刊介绍:
The Journal of Water Process Engineering aims to publish refereed, high-quality research papers with significant novelty and impact in all areas of the engineering of water and wastewater processing . Papers on advanced and novel treatment processes and technologies are particularly welcome. The Journal considers papers in areas such as nanotechnology and biotechnology applications in water, novel oxidation and separation processes, membrane processes (except those for desalination) , catalytic processes for the removal of water contaminants, sustainable processes, water reuse and recycling, water use and wastewater minimization, integrated/hybrid technology, process modeling of water treatment and novel treatment processes. Submissions on the subject of adsorbents, including standard measurements of adsorption kinetics and equilibrium will only be considered if there is a genuine case for novelty and contribution, for example highly novel, sustainable adsorbents and their use: papers on activated carbon-type materials derived from natural matter, or surfactant-modified clays and related minerals, would not fulfil this criterion. The Journal particularly welcomes contributions involving environmentally, economically and socially sustainable technology for water treatment, including those which are energy-efficient, with minimal or no chemical consumption, and capable of water recycling and reuse that minimizes the direct disposal of wastewater to the aquatic environment. Papers that describe novel ideas for solving issues related to water quality and availability are also welcome, as are those that show the transfer of techniques from other disciplines. The Journal will consider papers dealing with processes for various water matrices including drinking water (except desalination), domestic, urban and industrial wastewaters, in addition to their residues. It is expected that the journal will be of particular relevance to chemical and process engineers working in the field. The Journal welcomes Full Text papers, Short Communications, State-of-the-Art Reviews and Letters to Editors and Case Studies