Recent advances and prospects on the r-GO incorporated metal oxide semiconductors for enhanced photo-adsorptive abatement of toxic wastewater pollutants
Gauri Shukla , Manviri Rani , Uma Shanker , Omirserik Baigenzhenov , Ahmad Hosseini-Bandegharaei
{"title":"Recent advances and prospects on the r-GO incorporated metal oxide semiconductors for enhanced photo-adsorptive abatement of toxic wastewater pollutants","authors":"Gauri Shukla , Manviri Rani , Uma Shanker , Omirserik Baigenzhenov , Ahmad Hosseini-Bandegharaei","doi":"10.1016/j.jwpe.2024.106630","DOIUrl":null,"url":null,"abstract":"<div><div>Various toxic pollutants such as dyes, pesticides, polycyclic aromatic hydrocarbons (PAHs), substituted phenols, and pharmaceutical waste were discharged into the water bodies and impose serious health hazards to humans as well as to the environment. Therefore, it is crucial to identify sustainable treatment methods for the removal of these harmful pollutants. The reduced graphene oxide (r-GO) based composites have demonstrated improved strength, durability, flexibility, resistance to heat, UV radiation, fire, and electrical and thermal conductivity. Therefore, function as an efficient electron acceptor, enhancing photo induced charge transfer, impeding charge carrier recombination, boosting photocatalytic activity and increasing specific surface area for photocatalytic degradation and adsorption of wastewater pollutants. This review article summarizes the unique properties and green synthesis of r-GO based engineered nanomaterials to lessen toxic organic wastewater pollutants along with their environmental risk assessment for understanding the urgent need for their removal. The previous research and study in this enormous field has been evaluated scientifically and analyzed for finding research gaps. Photocatalysis, an eco-friendly and sustainable method was assessed as an effective method with detailed mechanism by employing solar-activated synthetic nanocomposite of r-GO@metal oxides (CaO, ZnO, Fe<sub>2</sub>O<sub>3</sub>, SnO<sub>2</sub>, TiO<sub>2</sub>, MgO) with characteristics of low-cost, fast, and efficient for improved adsorption and degradation. This research further assesses degradation routes for various toxic pollutants and active species involved in breakdown into safer metabolites along with the sustainability of r-GO based composites.</div></div>","PeriodicalId":17528,"journal":{"name":"Journal of water process engineering","volume":"69 ","pages":"Article 106630"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of water process engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214714424018622","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Various toxic pollutants such as dyes, pesticides, polycyclic aromatic hydrocarbons (PAHs), substituted phenols, and pharmaceutical waste were discharged into the water bodies and impose serious health hazards to humans as well as to the environment. Therefore, it is crucial to identify sustainable treatment methods for the removal of these harmful pollutants. The reduced graphene oxide (r-GO) based composites have demonstrated improved strength, durability, flexibility, resistance to heat, UV radiation, fire, and electrical and thermal conductivity. Therefore, function as an efficient electron acceptor, enhancing photo induced charge transfer, impeding charge carrier recombination, boosting photocatalytic activity and increasing specific surface area for photocatalytic degradation and adsorption of wastewater pollutants. This review article summarizes the unique properties and green synthesis of r-GO based engineered nanomaterials to lessen toxic organic wastewater pollutants along with their environmental risk assessment for understanding the urgent need for their removal. The previous research and study in this enormous field has been evaluated scientifically and analyzed for finding research gaps. Photocatalysis, an eco-friendly and sustainable method was assessed as an effective method with detailed mechanism by employing solar-activated synthetic nanocomposite of r-GO@metal oxides (CaO, ZnO, Fe2O3, SnO2, TiO2, MgO) with characteristics of low-cost, fast, and efficient for improved adsorption and degradation. This research further assesses degradation routes for various toxic pollutants and active species involved in breakdown into safer metabolites along with the sustainability of r-GO based composites.
期刊介绍:
The Journal of Water Process Engineering aims to publish refereed, high-quality research papers with significant novelty and impact in all areas of the engineering of water and wastewater processing . Papers on advanced and novel treatment processes and technologies are particularly welcome. The Journal considers papers in areas such as nanotechnology and biotechnology applications in water, novel oxidation and separation processes, membrane processes (except those for desalination) , catalytic processes for the removal of water contaminants, sustainable processes, water reuse and recycling, water use and wastewater minimization, integrated/hybrid technology, process modeling of water treatment and novel treatment processes. Submissions on the subject of adsorbents, including standard measurements of adsorption kinetics and equilibrium will only be considered if there is a genuine case for novelty and contribution, for example highly novel, sustainable adsorbents and their use: papers on activated carbon-type materials derived from natural matter, or surfactant-modified clays and related minerals, would not fulfil this criterion. The Journal particularly welcomes contributions involving environmentally, economically and socially sustainable technology for water treatment, including those which are energy-efficient, with minimal or no chemical consumption, and capable of water recycling and reuse that minimizes the direct disposal of wastewater to the aquatic environment. Papers that describe novel ideas for solving issues related to water quality and availability are also welcome, as are those that show the transfer of techniques from other disciplines. The Journal will consider papers dealing with processes for various water matrices including drinking water (except desalination), domestic, urban and industrial wastewaters, in addition to their residues. It is expected that the journal will be of particular relevance to chemical and process engineers working in the field. The Journal welcomes Full Text papers, Short Communications, State-of-the-Art Reviews and Letters to Editors and Case Studies