{"title":"Ruthenium-based macrocyclic and Schiff base complexes as prominent therapeutic agents: Their designing, synthesis and recent perspectives","authors":"Urmila Phageria , Sushama Kumari , Krishna Atal , Swati Bugalia","doi":"10.1016/j.poly.2024.117309","DOIUrl":null,"url":null,"abstract":"<div><div>The role of macrocyclic and Schiff base complexes in chemistry and life sciences offers vast opportunities to the researchers. Herein, this review focuses on the recent developments in ruthenium-based macrocyclic complexes and their utilities. Nowadays, ruthenium-based macrocyclic complexes are substantially exploited in copious applications, such as antioxidant, anticancer, antimicrobial, catalysis, sensors, pigments, dyes, etc. are a few of them. This study combines innovations in modelling and employment of these macrocyclic ligands and their complexes with ruthenium that serves as an interaction between the fields of chemistry, physics and biology. Probably Ru(II) and Ru(III) complexes achieve a wider holder of a three-dimensional scaffold through octahedral bonding, which opens up the possibility for a greater level of site diversity for attaching to their biological substrates. This study also expresses a broader overview of the topic and aims to highlight developments in ligand designing, synthetic methods, and potent applications especially as prominent therapeutic agents of these metal complexes in diverse areas. Additionally, some of the Schiff bases complexes with the same metal are also highlighted with their prominent applications.</div></div>","PeriodicalId":20278,"journal":{"name":"Polyhedron","volume":"266 ","pages":"Article 117309"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polyhedron","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0277538724004856","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The role of macrocyclic and Schiff base complexes in chemistry and life sciences offers vast opportunities to the researchers. Herein, this review focuses on the recent developments in ruthenium-based macrocyclic complexes and their utilities. Nowadays, ruthenium-based macrocyclic complexes are substantially exploited in copious applications, such as antioxidant, anticancer, antimicrobial, catalysis, sensors, pigments, dyes, etc. are a few of them. This study combines innovations in modelling and employment of these macrocyclic ligands and their complexes with ruthenium that serves as an interaction between the fields of chemistry, physics and biology. Probably Ru(II) and Ru(III) complexes achieve a wider holder of a three-dimensional scaffold through octahedral bonding, which opens up the possibility for a greater level of site diversity for attaching to their biological substrates. This study also expresses a broader overview of the topic and aims to highlight developments in ligand designing, synthetic methods, and potent applications especially as prominent therapeutic agents of these metal complexes in diverse areas. Additionally, some of the Schiff bases complexes with the same metal are also highlighted with their prominent applications.
期刊介绍:
Polyhedron publishes original, fundamental, experimental and theoretical work of the highest quality in all the major areas of inorganic chemistry. This includes synthetic chemistry, coordination chemistry, organometallic chemistry, bioinorganic chemistry, and solid-state and materials chemistry.
Papers should be significant pieces of work, and all new compounds must be appropriately characterized. The inclusion of single-crystal X-ray structural data is strongly encouraged, but papers reporting only the X-ray structure determination of a single compound will usually not be considered. Papers on solid-state or materials chemistry will be expected to have a significant molecular chemistry component (such as the synthesis and characterization of the molecular precursors and/or a systematic study of the use of different precursors or reaction conditions) or demonstrate a cutting-edge application (for example inorganic materials for energy applications). Papers dealing only with stability constants are not considered.