Novel probiotic fermented edible film based on gum arabic/whey protein isolate/isomalt/glycerol incorporated with Lactobacillus rhamnosus: Physical, antibacterial, and fresh pork preservation properties
{"title":"Novel probiotic fermented edible film based on gum arabic/whey protein isolate/isomalt/glycerol incorporated with Lactobacillus rhamnosus: Physical, antibacterial, and fresh pork preservation properties","authors":"Jingzhu Lu , Yue Lu , Chao Chang , Jine Wu","doi":"10.1016/j.foodhyd.2024.110875","DOIUrl":null,"url":null,"abstract":"<div><div>Some probiotic films have not shown satisfactory antibacterial performance, which limits their application in food. The purpose of this study is to improve the antibacterial activity of probiotic film by using probiotics to ferment the film solution, and to solve the problem of weak antibacterial performance of probiotic film. In this study, the solution composed of gum arabic/whey protein isolate/isomalt/glycerol was firstly fermented by <em>Lactobacillus rhamnosus</em> (<em>L. rhamnosus</em>) HN001, and then prepared into probiotic fermented films. The effect of probiotic fermentation on the films properties was systematically evaluated in this study. These results demonstrated that probiotic fermentation enhanced the mechanical strength, water barrier properties, thermal stability, and antioxidant activity of the films. According to the scanning electron microscopy (SEM), the probiotic-fermented films exhibited a more compact and coherent structure. Characterization of the films revealed that probiotic fermentation improved the compatibility between the film components and altered the conformation of whey protein. Compared to the non-fermented probiotic films, the probiotic-fermented films exhibited an 11% increase in the inhibition rate against <em>Staphylococcus aureus</em> and a 21% increase in the inhibition rate against <em>Salmonella</em>. The probiotic-fermented films successfully delayed the spoilage of fresh pork stored at 4 °C, effectively inhibiting microbial growth and reproduction, demonstrating a more effective preservation effect than the non-fermented probiotic films. This study provides an effective and convenient method for improving the antibacterial properties and preservation effect of probiotic films.</div></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"161 ","pages":"Article 110875"},"PeriodicalIF":11.0000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268005X24011494","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Some probiotic films have not shown satisfactory antibacterial performance, which limits their application in food. The purpose of this study is to improve the antibacterial activity of probiotic film by using probiotics to ferment the film solution, and to solve the problem of weak antibacterial performance of probiotic film. In this study, the solution composed of gum arabic/whey protein isolate/isomalt/glycerol was firstly fermented by Lactobacillus rhamnosus (L. rhamnosus) HN001, and then prepared into probiotic fermented films. The effect of probiotic fermentation on the films properties was systematically evaluated in this study. These results demonstrated that probiotic fermentation enhanced the mechanical strength, water barrier properties, thermal stability, and antioxidant activity of the films. According to the scanning electron microscopy (SEM), the probiotic-fermented films exhibited a more compact and coherent structure. Characterization of the films revealed that probiotic fermentation improved the compatibility between the film components and altered the conformation of whey protein. Compared to the non-fermented probiotic films, the probiotic-fermented films exhibited an 11% increase in the inhibition rate against Staphylococcus aureus and a 21% increase in the inhibition rate against Salmonella. The probiotic-fermented films successfully delayed the spoilage of fresh pork stored at 4 °C, effectively inhibiting microbial growth and reproduction, demonstrating a more effective preservation effect than the non-fermented probiotic films. This study provides an effective and convenient method for improving the antibacterial properties and preservation effect of probiotic films.
期刊介绍:
Food Hydrocolloids publishes original and innovative research focused on the characterization, functional properties, and applications of hydrocolloid materials used in food products. These hydrocolloids, defined as polysaccharides and proteins of commercial importance, are added to control aspects such as texture, stability, rheology, and sensory properties. The research's primary emphasis should be on the hydrocolloids themselves, with thorough descriptions of their source, nature, and physicochemical characteristics. Manuscripts are expected to clearly outline specific aims and objectives, include a fundamental discussion of research findings at the molecular level, and address the significance of the results. Studies on hydrocolloids in complex formulations should concentrate on their overall properties and mechanisms of action, while simple formulation development studies may not be considered for publication.
The main areas of interest are:
-Chemical and physicochemical characterisation
Thermal properties including glass transitions and conformational changes-
Rheological properties including viscosity, viscoelastic properties and gelation behaviour-
The influence on organoleptic properties-
Interfacial properties including stabilisation of dispersions, emulsions and foams-
Film forming properties with application to edible films and active packaging-
Encapsulation and controlled release of active compounds-
The influence on health including their role as dietary fibre-
Manipulation of hydrocolloid structure and functionality through chemical, biochemical and physical processes-
New hydrocolloids and hydrocolloid sources of commercial potential.
The Journal also publishes Review articles that provide an overview of the latest developments in topics of specific interest to researchers in this field of activity.