Chenghao Shang , Yun Zhou , Jiale Li , Ke Jiang , Genquan Zhong
{"title":"Hysteretic and low-cycle fatigue performance of arc-shaped corrugated steel plate dampers","authors":"Chenghao Shang , Yun Zhou , Jiale Li , Ke Jiang , Genquan Zhong","doi":"10.1016/j.jcsr.2024.109168","DOIUrl":null,"url":null,"abstract":"<div><div>Shear panel dampers (SPDs) are widely recognized for their outstanding performance and straightforward configuration, positioning them as a favored option for energy dissipation in the field of structural engineering. A primary issue with SPDs is the buckling of the web plate, which significantly diminishes their strengths and energy dissipation capabilities. To address this issue, a novel arc-shaped corrugated steel plate damper (ACSPD) has been developed in this paper, which is featured by an arc-shaped corrugated web plate to enhance the out-of-plane buckling resistance. This paper presents both experimental and numerical investigations into the hysteretic and fatigue characteristics of ACSPDs. Incremental-amplitude cyclic tests and constant-amplitude low-cycle fatigue tests were conducted on two identical sets of ACSPDs, with each set consisting of four ACSPD specimens featuring different corrugation parameters. The key test results, including the failure mechanisms, hysteresis curves, low-cycle fatigue properties and energy dissipation capacities, were fully reported and discussed. Finite element models were developed and validated against test results to enable a further understanding of the behavior of ACSPDs. Both the experimental and numerical results conclusively demonstrate that ACSPDs with appropriate corrugation parameters exhibit superior hysteretic and fatigue performance.</div></div>","PeriodicalId":15557,"journal":{"name":"Journal of Constructional Steel Research","volume":"224 ","pages":"Article 109168"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Constructional Steel Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143974X24007181","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Shear panel dampers (SPDs) are widely recognized for their outstanding performance and straightforward configuration, positioning them as a favored option for energy dissipation in the field of structural engineering. A primary issue with SPDs is the buckling of the web plate, which significantly diminishes their strengths and energy dissipation capabilities. To address this issue, a novel arc-shaped corrugated steel plate damper (ACSPD) has been developed in this paper, which is featured by an arc-shaped corrugated web plate to enhance the out-of-plane buckling resistance. This paper presents both experimental and numerical investigations into the hysteretic and fatigue characteristics of ACSPDs. Incremental-amplitude cyclic tests and constant-amplitude low-cycle fatigue tests were conducted on two identical sets of ACSPDs, with each set consisting of four ACSPD specimens featuring different corrugation parameters. The key test results, including the failure mechanisms, hysteresis curves, low-cycle fatigue properties and energy dissipation capacities, were fully reported and discussed. Finite element models were developed and validated against test results to enable a further understanding of the behavior of ACSPDs. Both the experimental and numerical results conclusively demonstrate that ACSPDs with appropriate corrugation parameters exhibit superior hysteretic and fatigue performance.
期刊介绍:
The Journal of Constructional Steel Research provides an international forum for the presentation and discussion of the latest developments in structural steel research and their applications. It is aimed not only at researchers but also at those likely to be most affected by research results, i.e. designers and fabricators. Original papers of a high standard dealing with all aspects of steel research including theoretical and experimental research on elements, assemblages, connection and material properties are considered for publication.