Shah Khalid Khan , Nirajan Shiwakoti , Abebe Diro , Alemayehu Molla , Iqbal Gondal , Matthew Warren
{"title":"Space cybersecurity challenges, mitigation techniques, anticipated readiness, and future directions","authors":"Shah Khalid Khan , Nirajan Shiwakoti , Abebe Diro , Alemayehu Molla , Iqbal Gondal , Matthew Warren","doi":"10.1016/j.ijcip.2024.100724","DOIUrl":null,"url":null,"abstract":"<div><div>Space Cybersecurity (SC) is becoming critical due to the essential role of space in global critical infrastructure – enabling communication, safe air travel, maritime trade, weather monitoring, environmental surveillance, financial services, and defence systems. Simultaneously, involving diverse stakeholders in space operations further amplifies this criticality. Similarly, previous research has identified isolated vulnerabilities in SC and proposed individual solutions to mitigate them. While such studies have provided useful insights, they do not offer a comprehensive analysis of space cyber-attack vectors and a critical evaluation of the effectiveness of mitigation strategies. This study addresses this problem by holistically examining the scope of potential space cyber-attack vectors, encompassing the ground, space, user, cloud, communication channels, and supply chain segments. Furthermore, the study evaluates the effectiveness of legacy security controls and frameworks and outlines SC-vector-aligned counterstrategies and mitigation techniques to tackle the unique SC threats. Based on the analysis, the study proposes future research directions to develop and test advanced technological solutions and regulatory and operational frameworks to establish international standards policies and foster stakeholder collaboration. The study contributes a multi-disciplinary foundation and roadmap that researchers, technology developers, and decision-makers can draw on in shaping a robust and sustainable SC framework.</div></div>","PeriodicalId":49057,"journal":{"name":"International Journal of Critical Infrastructure Protection","volume":"47 ","pages":"Article 100724"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Critical Infrastructure Protection","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874548224000659","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Space Cybersecurity (SC) is becoming critical due to the essential role of space in global critical infrastructure – enabling communication, safe air travel, maritime trade, weather monitoring, environmental surveillance, financial services, and defence systems. Simultaneously, involving diverse stakeholders in space operations further amplifies this criticality. Similarly, previous research has identified isolated vulnerabilities in SC and proposed individual solutions to mitigate them. While such studies have provided useful insights, they do not offer a comprehensive analysis of space cyber-attack vectors and a critical evaluation of the effectiveness of mitigation strategies. This study addresses this problem by holistically examining the scope of potential space cyber-attack vectors, encompassing the ground, space, user, cloud, communication channels, and supply chain segments. Furthermore, the study evaluates the effectiveness of legacy security controls and frameworks and outlines SC-vector-aligned counterstrategies and mitigation techniques to tackle the unique SC threats. Based on the analysis, the study proposes future research directions to develop and test advanced technological solutions and regulatory and operational frameworks to establish international standards policies and foster stakeholder collaboration. The study contributes a multi-disciplinary foundation and roadmap that researchers, technology developers, and decision-makers can draw on in shaping a robust and sustainable SC framework.
期刊介绍:
The International Journal of Critical Infrastructure Protection (IJCIP) was launched in 2008, with the primary aim of publishing scholarly papers of the highest quality in all areas of critical infrastructure protection. Of particular interest are articles that weave science, technology, law and policy to craft sophisticated yet practical solutions for securing assets in the various critical infrastructure sectors. These critical infrastructure sectors include: information technology, telecommunications, energy, banking and finance, transportation systems, chemicals, critical manufacturing, agriculture and food, defense industrial base, public health and health care, national monuments and icons, drinking water and water treatment systems, commercial facilities, dams, emergency services, nuclear reactors, materials and waste, postal and shipping, and government facilities. Protecting and ensuring the continuity of operation of critical infrastructure assets are vital to national security, public health and safety, economic vitality, and societal wellbeing.
The scope of the journal includes, but is not limited to:
1. Analysis of security challenges that are unique or common to the various infrastructure sectors.
2. Identification of core security principles and techniques that can be applied to critical infrastructure protection.
3. Elucidation of the dependencies and interdependencies existing between infrastructure sectors and techniques for mitigating the devastating effects of cascading failures.
4. Creation of sophisticated, yet practical, solutions, for critical infrastructure protection that involve mathematical, scientific and engineering techniques, economic and social science methods, and/or legal and public policy constructs.