Doping effects on boron carbide quantum dots for solar cells application: DFT study

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Physics and Chemistry of Solids Pub Date : 2024-11-12 DOI:10.1016/j.jpcs.2024.112446
Ibrahim Mahariq , Rohit Sharma , Anjan Kumar , Krunal Vaghela , Rekha M. M , Lokesh Verma , M Ravi Kumar , Maythum Ali Shallan , Abdulrahman A. Almehizia
{"title":"Doping effects on boron carbide quantum dots for solar cells application: DFT study","authors":"Ibrahim Mahariq ,&nbsp;Rohit Sharma ,&nbsp;Anjan Kumar ,&nbsp;Krunal Vaghela ,&nbsp;Rekha M. M ,&nbsp;Lokesh Verma ,&nbsp;M Ravi Kumar ,&nbsp;Maythum Ali Shallan ,&nbsp;Abdulrahman A. Almehizia","doi":"10.1016/j.jpcs.2024.112446","DOIUrl":null,"url":null,"abstract":"<div><div>The DFT method was used to explore the photovoltaic properties of nitrogen- and phosphorus-doped boron carbide quantum dots (BC<sub>3</sub>QDs). Results showed chemical activity values of −5.512 eV for nitrogen-doped and −3.971 eV for phosphorus-doped BC<sub>3</sub>QDs, with nitrogen-doped samples exhibiting higher chemical activity. Doping introduced mid-gap states, causing a red shift in the absorption spectra of 106 nm for nitrogen and 118 nm for phosphorus doping. Nitrogen doping (N-doping) enhanced charge transfer capabilities compared to phosphorus doping (P-doping). The nitrogen-doped BC<sub>3</sub>QDs also displayed HOMO and LUMO energy levels (−5.373 eV and −2.103 eV, respectively) that are closer to TiO<sub>2</sub> and I<sup>−</sup>/I<sub>3</sub><sup>−</sup>, making them more compatible for solar cell applications by increasing electron injection, fill factor, light collection efficiency, and open-circuit voltage. Despite an improved energy conversion potential, the N-doped BC<sub>3</sub>QDs’ efficiency (72.34 %) was impacted by rapid non-radiative recombination. These insights can guide the design of BC<sub>3</sub>QDs in solar energy applications, photocatalytic devices, and QD nano-composites for energy harvesting.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"198 ","pages":"Article 112446"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002236972400581X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The DFT method was used to explore the photovoltaic properties of nitrogen- and phosphorus-doped boron carbide quantum dots (BC3QDs). Results showed chemical activity values of −5.512 eV for nitrogen-doped and −3.971 eV for phosphorus-doped BC3QDs, with nitrogen-doped samples exhibiting higher chemical activity. Doping introduced mid-gap states, causing a red shift in the absorption spectra of 106 nm for nitrogen and 118 nm for phosphorus doping. Nitrogen doping (N-doping) enhanced charge transfer capabilities compared to phosphorus doping (P-doping). The nitrogen-doped BC3QDs also displayed HOMO and LUMO energy levels (−5.373 eV and −2.103 eV, respectively) that are closer to TiO2 and I/I3, making them more compatible for solar cell applications by increasing electron injection, fill factor, light collection efficiency, and open-circuit voltage. Despite an improved energy conversion potential, the N-doped BC3QDs’ efficiency (72.34 %) was impacted by rapid non-radiative recombination. These insights can guide the design of BC3QDs in solar energy applications, photocatalytic devices, and QD nano-composites for energy harvesting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于太阳能电池的碳化硼量子点的掺杂效应:DFT 研究
利用 DFT 方法探讨了掺氮和掺磷碳化硼量子点(BC3QDs)的光伏特性。结果表明,掺氮 BC3QDs 的化学活性值为 -5.512 eV,掺磷 BC3QDs 的化学活性值为 -3.971 eV,其中掺氮样品的化学活性更高。掺杂引入了中隙态,导致吸收光谱发生红移,氮掺杂为 106 nm,磷掺杂为 118 nm。与掺磷(P-doping)相比,掺氮(N-doping)增强了电荷转移能力。氮掺杂的 BC3QDs 还显示出更接近 TiO2 和 I-/I3- 的 HOMO 和 LUMO 能级(分别为 -5.373 eV 和 -2.103 eV),通过提高电子注入、填充因子、集光效率和开路电压,使它们更适合太阳能电池应用。尽管掺杂 N 的 BC3QDs 的能量转换潜力有所提高,但其效率(72.34%)受到快速非辐射重组的影响。这些见解可以指导太阳能应用中 BC3QDs 的设计、光催化设备以及用于能量收集的 QD 纳米复合材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
期刊最新文献
Editorial Board Study on structure and electrical properties of BNBT-La2/3ZrO3 ceramic Constructing a binderless carbon-coated In2O3 anode for high-performance lithium-ion batteries Simulation and optimization of a CsSnI3/CsSnGeI3/Cs3Bi2I9 based triple absorber layer perovskite solar cell using SCAPS-1D RPA Dielectric functions: Streamlined approach to relaxation effects, binding and high momentum dispersion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1