{"title":"Calculation of the multiplicity moments in nuclear safeguards with forward transport theory","authors":"Liliane Basso Barichello , Imre Pázsit","doi":"10.1016/j.anucene.2024.111046","DOIUrl":null,"url":null,"abstract":"<div><div>The theoretical basis of multiplicity counting of nuclear safeguards lies in the calculation of the factorial moments of the number of neutrons emitted from the item. While the traditional method to derive these moments uses the so-called point model in which the spatial transport of neutrons in the item is neglected, the theoretical framework has recently been re-derived in a one-speed transport model, which is inherently of the backward (adjoint) type. The arising integral equations for the moments were solved numerically with a collision number type (iterated kernel or Neumann-series) expansion. In this paper, we show that effective methods of analytical character, originally developed for direct (forward-type) transport problems, can be associated with the solution of the adjoint-type moment equations. The theory is described, and quantitative results are given for selected representative cases. The accuracy and computational speed of the method is investigated and compared favourably with those of the collision number expansion method. The quantitative results also lend some new insight into the properties of statistics of the multiplicative process for the exiting neutrons.</div></div>","PeriodicalId":8006,"journal":{"name":"Annals of Nuclear Energy","volume":"212 ","pages":"Article 111046"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306454924007096","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The theoretical basis of multiplicity counting of nuclear safeguards lies in the calculation of the factorial moments of the number of neutrons emitted from the item. While the traditional method to derive these moments uses the so-called point model in which the spatial transport of neutrons in the item is neglected, the theoretical framework has recently been re-derived in a one-speed transport model, which is inherently of the backward (adjoint) type. The arising integral equations for the moments were solved numerically with a collision number type (iterated kernel or Neumann-series) expansion. In this paper, we show that effective methods of analytical character, originally developed for direct (forward-type) transport problems, can be associated with the solution of the adjoint-type moment equations. The theory is described, and quantitative results are given for selected representative cases. The accuracy and computational speed of the method is investigated and compared favourably with those of the collision number expansion method. The quantitative results also lend some new insight into the properties of statistics of the multiplicative process for the exiting neutrons.
期刊介绍:
Annals of Nuclear Energy provides an international medium for the communication of original research, ideas and developments in all areas of the field of nuclear energy science and technology. Its scope embraces nuclear fuel reserves, fuel cycles and cost, materials, processing, system and component technology (fission only), design and optimization, direct conversion of nuclear energy sources, environmental control, reactor physics, heat transfer and fluid dynamics, structural analysis, fuel management, future developments, nuclear fuel and safety, nuclear aerosol, neutron physics, computer technology (both software and hardware), risk assessment, radioactive waste disposal and reactor thermal hydraulics. Papers submitted to Annals need to demonstrate a clear link to nuclear power generation/nuclear engineering. Papers which deal with pure nuclear physics, pure health physics, imaging, or attenuation and shielding properties of concretes and various geological materials are not within the scope of the journal. Also, papers that deal with policy or economics are not within the scope of the journal.