Byoung-Uhn Bae, Jae Bong Lee, Yu-Sun Park, Seok Cho, Kyoung-Ho Kang
{"title":"Investigation of the RCS-containment integral effect test on intermediate and small break loss-of-coolant accident (LOCA) transients","authors":"Byoung-Uhn Bae, Jae Bong Lee, Yu-Sun Park, Seok Cho, Kyoung-Ho Kang","doi":"10.1016/j.anucene.2024.111026","DOIUrl":null,"url":null,"abstract":"<div><div>Considering the importance of the pressure build-up depending on the mass / energy (M/E) release from a reactor coolant system (RCS), the ATLAS-CUBE integral effect test facility was utilized to simulate the thermal–hydraulic interaction between a RCS and a containment. To investigate the effect of the break size on the pressure / temperature (P/T) build-up in a containment, this study focused on the integral effect tests for an intermediate-break loss-of-coolant accident (IBLOCA) and a small-break loss-of-coolant accident (SBLOCA). As the test results, the decrease of the coolant water level in the RCS according to the cold leg break induced the core heat-up and the reactor core was cooled down after the safety injection to the RCS. The P/T transient of a containment could be highly dependent not only on the break size, but also on the two-phase flow characteristics and the initial temperature of the steam-gas mixture in a containment.</div></div>","PeriodicalId":8006,"journal":{"name":"Annals of Nuclear Energy","volume":"212 ","pages":"Article 111026"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306454924006893","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Considering the importance of the pressure build-up depending on the mass / energy (M/E) release from a reactor coolant system (RCS), the ATLAS-CUBE integral effect test facility was utilized to simulate the thermal–hydraulic interaction between a RCS and a containment. To investigate the effect of the break size on the pressure / temperature (P/T) build-up in a containment, this study focused on the integral effect tests for an intermediate-break loss-of-coolant accident (IBLOCA) and a small-break loss-of-coolant accident (SBLOCA). As the test results, the decrease of the coolant water level in the RCS according to the cold leg break induced the core heat-up and the reactor core was cooled down after the safety injection to the RCS. The P/T transient of a containment could be highly dependent not only on the break size, but also on the two-phase flow characteristics and the initial temperature of the steam-gas mixture in a containment.
期刊介绍:
Annals of Nuclear Energy provides an international medium for the communication of original research, ideas and developments in all areas of the field of nuclear energy science and technology. Its scope embraces nuclear fuel reserves, fuel cycles and cost, materials, processing, system and component technology (fission only), design and optimization, direct conversion of nuclear energy sources, environmental control, reactor physics, heat transfer and fluid dynamics, structural analysis, fuel management, future developments, nuclear fuel and safety, nuclear aerosol, neutron physics, computer technology (both software and hardware), risk assessment, radioactive waste disposal and reactor thermal hydraulics. Papers submitted to Annals need to demonstrate a clear link to nuclear power generation/nuclear engineering. Papers which deal with pure nuclear physics, pure health physics, imaging, or attenuation and shielding properties of concretes and various geological materials are not within the scope of the journal. Also, papers that deal with policy or economics are not within the scope of the journal.