Trametinib and M17, a novel small molecule inhibitor of AKT, display a synergistic antitumor effect in triple negative breast cancer cells through the AKT/mTOR and MEK/ERK pathways
Hongwei Han , Minkai Yang , Zhongling Wen , Feng Mei , Qingqing Chen , Yudi Ma , Xiaohui Lai , Yahan Zhang , Rongjun Fang , Tongming Yin , Shucun Sun , Xiaoming Wang , Jinliang Qi , Hongyan Lin , Yonghua Yang
{"title":"Trametinib and M17, a novel small molecule inhibitor of AKT, display a synergistic antitumor effect in triple negative breast cancer cells through the AKT/mTOR and MEK/ERK pathways","authors":"Hongwei Han , Minkai Yang , Zhongling Wen , Feng Mei , Qingqing Chen , Yudi Ma , Xiaohui Lai , Yahan Zhang , Rongjun Fang , Tongming Yin , Shucun Sun , Xiaoming Wang , Jinliang Qi , Hongyan Lin , Yonghua Yang","doi":"10.1016/j.bioorg.2024.107981","DOIUrl":null,"url":null,"abstract":"<div><div>Triple negative breast cancer (TNBC) is associated with a poor prognosis and limited response to traditional chemotherapy, necessitating the exploration of novel treatment approaches. Recent researches have highlighted the interconnected roles of the PI3K/AKT pathway and MAPK pathway in TNBC cells, contributing to the efficacy of treatments. Therefore, the concurrent inhibition of both pathways presents a potential new therapeutic strategy for TNBC patients. This study aimed to evaluate the antitumor efficacy of M17, an AKT allosteric inhibitor and a new synthesized shikonin derivative, both alone and in combination with the MEK inhibitor trametinib. We applied various cellular assays and a subcutaneous 4T1 tumor bearing BALB/c mice model were utilized to assess the <em>in vitro</em> and <em>in vivo</em> antitumor effects. Computational docking and Bio-Layer Interferometry (BLI) were employed to investigate the binding of M17 with AKT. Additionally, flow cytometry, transwell assays, western blotting, and tumor xenograft assays were conducted to explore the potential synergistic mechanisms of the combined therapy. The results demonstrated that M17 exhibited moderate antitumor activity against TNBC cells, but significantly enhanced the apoptotic effects and inhibited proliferation and migration when combined with trametinib. Furthermore, the combination of M17 and trametinib showed even more pronounced antitumor activity <em>in vivo</em>. Mechanistically, the dual therapy synergistically suppressed TNBC by targeting the AKT/mTOR and MEK/ERK signaling pathways and inhibiting epithelial-mesenchymal transition. In conclusion, the findings suggested that the combination of M17 and trametinib holds promise as a synergistic treatment option for TNBC patients.</div></div>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":"154 ","pages":"Article 107981"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045206824008861","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Triple negative breast cancer (TNBC) is associated with a poor prognosis and limited response to traditional chemotherapy, necessitating the exploration of novel treatment approaches. Recent researches have highlighted the interconnected roles of the PI3K/AKT pathway and MAPK pathway in TNBC cells, contributing to the efficacy of treatments. Therefore, the concurrent inhibition of both pathways presents a potential new therapeutic strategy for TNBC patients. This study aimed to evaluate the antitumor efficacy of M17, an AKT allosteric inhibitor and a new synthesized shikonin derivative, both alone and in combination with the MEK inhibitor trametinib. We applied various cellular assays and a subcutaneous 4T1 tumor bearing BALB/c mice model were utilized to assess the in vitro and in vivo antitumor effects. Computational docking and Bio-Layer Interferometry (BLI) were employed to investigate the binding of M17 with AKT. Additionally, flow cytometry, transwell assays, western blotting, and tumor xenograft assays were conducted to explore the potential synergistic mechanisms of the combined therapy. The results demonstrated that M17 exhibited moderate antitumor activity against TNBC cells, but significantly enhanced the apoptotic effects and inhibited proliferation and migration when combined with trametinib. Furthermore, the combination of M17 and trametinib showed even more pronounced antitumor activity in vivo. Mechanistically, the dual therapy synergistically suppressed TNBC by targeting the AKT/mTOR and MEK/ERK signaling pathways and inhibiting epithelial-mesenchymal transition. In conclusion, the findings suggested that the combination of M17 and trametinib holds promise as a synergistic treatment option for TNBC patients.
期刊介绍:
Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry.
For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature.
The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.