Frequency-spatial interaction network for gaze estimation

IF 3.7 2区 工程技术 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Displays Pub Date : 2024-11-21 DOI:10.1016/j.displa.2024.102878
Yuanning Jia , Zhi Liu , Ying Lv , Xiaofeng Lu , Xuefeng Liu , Jie Chen
{"title":"Frequency-spatial interaction network for gaze estimation","authors":"Yuanning Jia ,&nbsp;Zhi Liu ,&nbsp;Ying Lv ,&nbsp;Xiaofeng Lu ,&nbsp;Xuefeng Liu ,&nbsp;Jie Chen","doi":"10.1016/j.displa.2024.102878","DOIUrl":null,"url":null,"abstract":"<div><div>Gaze estimation is a fundamental task in the field of computer vision, which determines the direction a person is looking at. With advancements in Convolutional Neural Networks (CNNs) and the availability of large-scale datasets, appearance-based models have made significant progress. Nonetheless, CNNs exhibit limitations in extracting global information from features, resulting in a constraint on gaze estimation performance. Inspired by the properties of the Fourier transform in signal processing, we propose the Frequency-Spatial Interaction network for Gaze estimation (FSIGaze), which integrates residual modules and Frequency-Spatial Synergistic (FSS) modules. To be specific, its FSS module is a dual-branch structure with a spatial branch and a frequency branch. The frequency branch employs Fast Fourier Transformation to transfer a latent representation to the frequency domain and applies adaptive frequency filter to achieve an image-size receptive field. The spatial branch, on the other hand, can extract local detailed features. Acknowledging the synergistic benefits of global and local information in gaze estimation, we introduce a Dual-domain Interaction Block (DIB) to enhance the capability of the model. Furthermore, we implement a multi-task learning strategy, incorporating eye region detection as an auxiliary task to refine facial features. Extensive experiments demonstrate that our model surpasses other state-of-the-art gaze estimation models on three three-dimensional (3D) datasets and delivers competitive results on two two-dimensional (2D) datasets.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"86 ","pages":"Article 102878"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938224002427","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Gaze estimation is a fundamental task in the field of computer vision, which determines the direction a person is looking at. With advancements in Convolutional Neural Networks (CNNs) and the availability of large-scale datasets, appearance-based models have made significant progress. Nonetheless, CNNs exhibit limitations in extracting global information from features, resulting in a constraint on gaze estimation performance. Inspired by the properties of the Fourier transform in signal processing, we propose the Frequency-Spatial Interaction network for Gaze estimation (FSIGaze), which integrates residual modules and Frequency-Spatial Synergistic (FSS) modules. To be specific, its FSS module is a dual-branch structure with a spatial branch and a frequency branch. The frequency branch employs Fast Fourier Transformation to transfer a latent representation to the frequency domain and applies adaptive frequency filter to achieve an image-size receptive field. The spatial branch, on the other hand, can extract local detailed features. Acknowledging the synergistic benefits of global and local information in gaze estimation, we introduce a Dual-domain Interaction Block (DIB) to enhance the capability of the model. Furthermore, we implement a multi-task learning strategy, incorporating eye region detection as an auxiliary task to refine facial features. Extensive experiments demonstrate that our model surpasses other state-of-the-art gaze estimation models on three three-dimensional (3D) datasets and delivers competitive results on two two-dimensional (2D) datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于凝视估计的频率-空间交互网络
凝视估计是计算机视觉领域的一项基本任务,它能确定一个人正在注视的方向。随着卷积神经网络(CNN)的进步和大规模数据集的可用性,基于外观的模型取得了重大进展。然而,卷积神经网络在从特征中提取全局信息方面表现出局限性,从而制约了凝视估计的性能。受信号处理中傅立叶变换特性的启发,我们提出了用于注视估计的频率-空间交互网络(FSIGaze),它集成了残差模块和频率-空间协同(FSS)模块。具体来说,其 FSS 模块是一个双分支结构,包括空间分支和频率分支。频率分支采用快速傅里叶变换将潜在表征转移到频域,并应用自适应频率滤波器实现图像大小的感受野。空间分支则可以提取局部细节特征。考虑到全局和局部信息在凝视估计中的协同优势,我们引入了双域交互块(DIB)来增强模型的能力。此外,我们还实施了多任务学习策略,将眼部区域检测作为完善面部特征的辅助任务。广泛的实验证明,我们的模型在三个三维(3D)数据集上超越了其他最先进的凝视估计模型,在两个二维(2D)数据集上也取得了具有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Displays
Displays 工程技术-工程:电子与电气
CiteScore
4.60
自引率
25.60%
发文量
138
审稿时长
92 days
期刊介绍: Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface. Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.
期刊最新文献
DHDP-SLAM: Dynamic Hierarchical Dirichlet Process based data association for semantic SLAM Fabrication and Reflow of Indium Bumps for Active-Matrix Micro-LED Display of 3175 PPI Perceptually-calibrated synergy network for night-time image quality assessment with enhancement booster and knowledge cross-sharing High performance A-PWM μLED pixel circuit design using double gate oxide TFTs Frequency-spatial interaction network for gaze estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1